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This article considers a structured latent curve model for multiple repeated measures. In a
structured latent curve model, a smooth nonlinear function characterizes the mean response.
A first-order Taylor polynomial taken with regard to the mean function defines elements of
a restricted factor matrix that may include parameters that enter nonlinearly. Similar to factor
scores, random coefficients are combined with the factor matrix to produce individual latent
curves that need not follow the same form as the mean curve. Here the associations between
change characteristics in multiple repeated measures are studied. A factor analysis model for
covariates is included as a means of relating latent covariates to the factors characterizing
change in different repeated measures. An example is provided.

In studies of repeated measures, investigators often obtain
measures of two or more variables with interest in how each
variable changes across the study period. Although most
studies of change have focused on analysis of a single
response variable, recent applications of popular analytic
methods have considered the joint observation of multiple
response variables measured at multiple time points. In
these applications, researchers may be interested not only in
the assessment of individual differences in change in indi-
vidual variables but also in how characteristics of change in
different variables are related. This may occur in a variety of
situations. In one setting, the same group of individuals
provides measures of the variables of interest, such as in
studies of physical or psychological well-being wherein
multiple indicators of health are obtained. It is interesting
then to determine whether, for example, an increase in one
aspect of health is related to an increase (or decrease) in
another.

In a slightly different setting, multiple informants may
provide information about a key individual, such as parents
and teachers providing developmental information about a
child, and it is of interest to study the degree of agreement
(or disagreement) between the different sources assessed
across time. Another situation involves the study of distin-
guishable individuals nested within pairs (e.g., men and
women nested within couples) or individuals nested within
slightly larger groups (e.g., individuals nested within house-
holds), in which interest may be in the extent to which
individuals within groups have similar ratings on the vari-
ables of interest. Many other situations are, of course, pos-
sible. For any such case in a cross-sectional setting, there is
often interest in how the variables relate to each other at the
one point in time. With the addition of multiple time points,
it is then interesting to also consider how characteristics of
change in the different variables may be related.

Mixed-effects models, also known as multilevel, random
coefficient, or hierarchical linear models, have been used
extensively to describe data in which the units of study are
nested within higher level units (Bock, 1989; Bryk & Rau-
denbush, 1987; Goldstein, 1995; Kreft & de Leeuw, 1998;
Longford, 1993; Snijders & Bosker, 1999). A classic exam-
ple comes from education, in which students are the unit of
study and are nested within classrooms or schools. These
models have been successfully applied to repeated measures
data in which repeated observations of the same variable are
recorded over a specified period of time or space for a
sample of individuals. For time structured data, a linear
mixed-effects model is composed of a fixed part that char-
acterizes the response at the population level, providing a
summary of how a variable changes on average as a func-
tion of time. The random part is handled as a two-stage
procedure, yielding information about variation in re-
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sponses at the level of the individual (Level 1) as well as
variation in response trajectories between individuals
(Level 2).

Closely related to mixed-effects models are latent growth
models, or latent curve models. The latent curve model
(Meredith & Tisak, 1984, 1990) is based on seminal work
produced independently by Rao (1958), Tucker (1958,
1966), and Scher, Young, and Meredith (1960, appendix).
In this earlier work, a technique similar to component anal-
ysis was used to produce observable weights akin to com-
ponent scores. The procedure has been applied to learning
and growth data. In these settings, components that charac-
terize the shape of the curve are combined with the weights
to obtain individual growth or learning curves. As a descrip-
tive procedure, however, the result is not a testable model.
In contrast, the latent curve model is similar to the standard
unrestricted factor analysis model in which both the mean
vector and the covariance matrix of the manifest variables
have imposed structures. In a latent curve model, columns
of the factor matrix define the general shape of the response
trajectories over time and may be specified in advance or
left to be estimated, with the latter approach providing some
degree of flexibility in describing the mean curve when a
structure cannot be specified in advance or adequately sum-
marized by conventional structures such as a polynomial
function (McArdle, 1988). This is in contrast to a linear
mixed-effects model that is usually based on a prespecified
mean structure, such as a straight line or quadratic function.
The factors, or random coefficients, define the characteris-
tics of change in the response. Individual latent response
curves are assumed to be a linear combination of the factor
matrix and the random coefficients specific to the individ-
ual. The random coefficients permit the individual latent
curves to deviate from the mean curve, allowing for indi-
vidual differences in response trajectories.

Individual differences in characteristics of change present
the possibility of their study by introducing predictors or
correlates of the random coefficients at the second level of
the model. Latent covariates can be handled by including a
factor analysis model for a subset of variables wherein the
common factor is related to the random coefficients at the
second level (Browne, 1993). Blozis and Cudeck (1999)
developed a partially nonlinear mixed-effects model, a form
of mixed-effects model in which fixed parameters may enter
nonlinearly but random coefficients are restricted to enter
linearly, with a factor analysis model for covariates mea-
sured with error. Latent covariates are then studied as cor-
relates of the random coefficients in the second level of the
model.

An appealing characteristic of the random coefficient
model in a repeated measures setting is that it may be used
to analyze data that are incomplete or for which individuals
are observed at different time points (Jennrich & Schluchter,
1986; McArdle & Hamagami, 1992; Mehta & West, 2000).

Latent curve models, based on a factor analysis model,
originally depended on estimation techniques involving the
use of sufficient statistics, such as a sample mean vector and
covariance matrix. Estimation procedures that make use of
raw data allow for these models to be fitted to incomplete or
unbalanced data (e.g., Jennrich & Schluchter, 1986). This is
particularly useful in analyses of longitudinal data, in which
data are often incomplete or individuals are observed at
different time points.

More recently, these models have been considered for the
analysis of multivariate repeated measures (MacCallum,
Kim, Malarkey, & Kiecolt-Glaser, 1997). Reinsel (1992,
1994) considered a linear mixed-effects model for multivar-
iate normal repeated measures that are both complete and
balanced with respect to measurement occasions. Shah,
Laird, and Schoenfeld (1997) considered a linear mixed-
effects model for multivariate repeated measures that are
incomplete, unbalanced, or both. Estimation of these mod-
els is generally straightforward, relying on techniques com-
mon to the univariate case. To date, several applications of
random coefficient models for multivariate repeated mea-
sures have appeared (e.g., Curran, Stice, & Chassin, 1997;
McArdle & Anderson, 1990). A nonlinear form of the
model in which random coefficients enter the model non-
linearly has also been considered for multivariate repeated
measures (Davidian & Giltinan, 1995). Although more flex-
ible than the linear version, the fully nonlinear mixed-
effects models can be difficult to estimate; however, efforts
in this area have produced promising results (Cudeck & du
Toit, 2003; Davidian & Giltinan, 1995; Pinheiro & Bates,
2000). The difficulty arises when the random coefficients
enter the model in a nonlinear way, resulting in a marginal
distribution of the response that cannot, in most cases, be
evaluated (Davidian & Giltinan, 1995, Section 4.4).

This article considers a structured latent curve model for
multivariate normal repeated measures that also includes a
factor analysis model for a separate set of variables that are
correlates of the random coefficients in the second level of
the latent curve model. This article does not propose a new
technique but rather exposes researchers to the application
of structured latent curve models in a multivariate setting
(MacCallum et al., 1997). The focus is on a model that
allows for the study of the associations between character-
istics of change in different response variables whose mean
curves may be nonlinear in form, as well as the associations
between these characteristics and a separate set of variables
(possibly latent) considered to be related to the change
processes of the repeated measures at the second level.
Estimation of the model proceeds in a straightforward man-
ner using techniques standard for linear models. This is due
to the fact that the parameters defining the factor matrix may
enter in a nonlinear manner but are assumed to be fixed
across individuals. The random coefficients, which vary
across individuals, enter the model linearly. When the ran-
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dom coefficients enter the model in a strictly linear manner,
it is possible to estimate a nonlinear function by normal
maximum likelihood with methods typically used for linear
models (Cudeck & du Toit, 2003; Davidian & Giltinan,
1995). Thus, a benefit of the structured latent curve model is
that many nonlinear forms of change are easily handled.

A common approach to approximating a nonlinear re-
sponse form is to use a polynomial. There have been several
successful applications in which a quadratic growth model
was used (see, e.g., Bryk & Raudenbush, 1992; Rauden-
bush, Brennan, & Barnett, 1995; Windle & Windle, 2001).
Models based on polynomial functions are generally easy to
estimate because the random coefficients enter in a linear
manner. Sometimes it is necessary to expand the model by
including terms that represent different powers of the pre-
dictors. This may be done to better approximate nonlinear
response forms. In a model for the study of change, these
additional terms typically involve transformations of the
time variable.

There are, however, some drawbacks to this approach that
are not necessarily applicable to the methods discussed here.
With an increase in the number of power terms, the curve
becomes a better approximation to the observed responses
but may also begin to serve as a model for random variation
rather than the true shape of the response (Weisberg, 1985).
As discussed by Pinheiro and Bates (2000), with an increase
in the number of terms there is also a decrease in parsimony
and, in general, the possibility of multicollinearity among
coefficients. In many cases, a polynomial, such as a qua-
dratic, is not suitable as a means of describing the behavior
under study. For example, in learning studies performance
measures may show signs of stability after the participant
has mastered the task. In a treatment setting, there may be a
lag in response to the treatment, with the treatment effect
occurring over the latter phase of the study period. In the
case of these response patterns, a parabolic form is not ideal.
Responses of these forms could possibly be handled by
spline regression models in which different segments of the
response period are modeled with different polynomial
functions (Cudeck & Klebe, 2002; Snijders & Bosker,
1999). Another strategy is to use a nonlinear function to
characterize change. Nonlinear functions may be specified
to have parameters directly relevant to the behavior, making
the model highly interpretable and parsimonious (Cudeck,
1996; Pinheiro & Bates, 2000). This is especially important
in subsequent studies of individual differences in change
characteristics.

Before development of the structured latent curve model
for multiple repeated measures, descriptions of the latent
curve and the structured latent curve models for a single
repeated measure are provided. Building on Browne (1993)
and extending the work of MacCallum et al. (1997), the
structured latent curve model for multiple repeated mea-
sures that also includes a factor analysis model for covari-

ates is then described, followed by an application to data
from a learning experiment.

Background: Latent Curve Models for a Single
Repeated Measure

The latent curve model of Meredith and Tisak (1984,
1990) has received extensive consideration (MacCallum et
al., 1997; McArdle & Epstein, 1987; Stoolmiller, 1995;
Willett & Sayer, 1994). The model is reviewed here. Con-
sidering a set of repeated observations of a random variable
Y for individual i, let the vector yi � (y1i, y2i, . . . , yTi)� be
a set of responses on Y for individual i. The responses are
observed according to a set of measurement occasions ti �
(1, . . . , Ti)�, where Ti is the total number of observations for
the individual. As suggested by the subscript i on ti, times of
measurement may vary from one person to another as a
result of, for example, individuals being assessed at differ-
ent measurement occasions or on a different number of
occasions. In a latent curve model, it is typically assumed
that true change in the response variable follows a specified
form common to all individuals, such as a straight line, but
that the individual curves may vary from one another, such
as in their intercepts and linear rates of change. The errors
of measurement corresponding to each measurement occa-
sion are often assumed to be mutually independent and
distributed with constant variance across time.

A general expression for the latent curve model for yi is

yi � �i�i � �i, (1)

where �i is a factor loading matrix:

�i � �
�11 �12 · · · �1J

�21 �22 · · · �2J···
···

· · ·
···

�Ti1 �Ti2 · · · �TiJ

�.

The number of rows in �i is equal to the number of
measurement occasions on which individual i was observed.
The columns of �i, commonly referred to as “basis” curves,
have elements (e.g., �11) that define the shape of the curve
over the observed measurement occasions. For example, in
fitting a model in which the response is a linear function of
time, the factor matrix typically contains a column of ones
for the intercept and a column of fixed values equal to the
measures of time (Willett & Sayer, 1994). To fit a nonlinear
curve, nonlinear transformations of time may be introduced,
such as a quadratic or cubic transformation. Otherwise, in
some cases certain elements of the factor loading matrix
may be estimated to handle other forms of nonlinear change
(McArdle, 1988; Meredith & Tisak, 1990; Stoolmiller,
1995).

The factor �i � (�1i, �2i, . . . , �Ji)� is a vector of random
coefficients particular to individual i. The random coeffi-
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cients represent different characteristics of change. Com-
bined with the factor matrix in Equation 1, an individual’s
set of random coefficients indicates the extent to which that
person’s latent response curve depends on the basis curves.
Using the example of a model for which the response is a
linear function of time, a relatively large value for the
random intercept, would, for instance, indicate an intercept
that is high relative to others. The mean and covariance
matrix of the random coefficients are � and �, respectively.
The means of the random coefficients represent the charac-
teristics of change in the average response, that is, change at
the population level. The covariance matrix � is

� � �
��1

2

��2�1 ��2

2

···
···

· · ·
��J�1 ��J�2 · · · ��J

2
�,

where the diagonal elements are the variances of the random
coefficients and the off-diagonal elements are the covari-
ances between them. The variances of the coefficients are
measures of the extent to which individuals differ in each
change characteristic, and the covariances between them
represent the linear associations between different charac-
teristics. For an individual, the combination of the factor
loading matrix and the random coefficients yields a latent
curve. That is, true change in an individual’s response is a
function of a factor matrix common to all individuals but is
weighted differently by change characteristics that may vary
from one person to another. Finally, the measurement errors
�i � (�1i, �2i, . . . , �Ti)� are discrepancies between the per-
son’s true curve and his or her observed curve at different
time points. The errors are often assumed to have means
equal to zero and covariance matrix ��i, where ��i depends
on the individual only with regard to its dimensions. Typi-
cally, the errors are assumed to be independent between
measurement occasions with constant variance across time,
taking on the following structure:

��i � �
��

2

��
2

· · ·
��

2
�,

where ��
2 is equal to the variance of the measurement errors:

var(�i). Finally, the measurement errors and the random
coefficients are assumed to be independent. Given the pre-
ceding assumptions, the mean vector and covariance matrix
of yi are

�i � �i�

and

�i � �i���i � ��i.

In most cases, the covariance matrix of the random coeffi-
cients is assumed to be unstructured so that the variances of
the different coefficients may differ and the coefficients may
covary. At the individual level, the error structure ��i may
assume a variety of forms other than one that assumes
independence between time points and constant variance
across time. Willett and Sayer (1994) provided several
examples for different within-individual error structures,
such as one that assumes independence but heterogeneity of
variance across time.

In a latent curve model, the form of the curve need not be
explicitly defined. That is, it is not necessary to specify in
advance all elements of the factor matrix that define the
different aspects of change in a response variable (McArdle,
1988; Meredith & Tisak, 1990; Stoolmiller, 1995). The
advantage is that the model can handle some nonlinear
forms of change, making it a useful method for certain types
of data, such as developmental, growth, or learning data,
that typically do not follow a linear trajectory. On the basis
of a latent curve model, a structured latent curve model
specifies in advance elements of the factor matrix; param-
eters of the matrix may enter nonlinearly with the assump-
tion that they are fixed across individuals. Similar to the
case with the standard latent curve model, the random
coefficients of the structured latent curve model enter in a
linear manner, thus allowing for estimation of the model
with common techniques such as normal maximum likeli-
hood. A description of the structured latent curve model for
a single repeated measure is provided here. Readers are
referred to Browne (1993) for more details concerning the
development of the model.

Structured Latent Curve Models for a Single
Repeated Measure

Formulation of the structured latent curve model begins
with a specification of a function, referred to as the target
function, to represent the mean response. The curves of
individuals, however, need not follow the form of the target
function. In discussing the more technical aspects of the
model, it is convenient to first consider the case in which
data are complete and all individuals are observed according
to the same data collection scheme. Cases for which data are
unbalanced or missing are addressed later, when the model
is considered for multiple repeated measures.

First, let � � (�1, �2, . . . , �T)� denote the set of true
mean responses for a random variable Y observed according
to a set of discrete measurement occasions, t � (1, 2, . . . ,
T)�. In a structured latent curve model, the mean curve is
assumed to follow a smooth function, f(	, t), where 	 �
(�1, . . . , �J)� is a vector of J unknown, fixed parameters.
That is,
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�
�1

�2···
�T

� � �
f1��, 1�
f2��, 2�

···
fT��, T�

� ,

where ft(�, t) represents the target function evaluated at time
t. For example, Meredith and Tisak (1990, p. 117) used an
exponential function to characterize mean response times on
a learning task:

�t � f��, t� � �1 	 ��1 	 �2�exp���3�t 	 1��, (2)

where, on occasion t, the mean response �t is assumed to be
a function of three parameters: �1 and �2, representing
population potential and initial response times, respectively,
and �3, representing the population initial rate of change.
The coefficients �1 and �2 enter the equation in a linear
manner. The coefficient �3 enters nonlinearly.

The set of responses for an individual, yi � (y1i, . . . ,
yTi)�, is assumed to be the sum of a common score vector zi

and an error vector �i:

�
y1i

y2i···
yTi

� � �
z1i

z2i···
zTi

� � �
�1i

�2i···
�Ti

�
yi � zi � �i. (3)

It is assumed that the expected value of the common score
zi is �. It follows then, under the model for the mean
response, that the expected value of the common score is
equal to the function f(	, t). That is,

E�zi� � � � f�	, t�. (4)

Thus, the form of the mean response specified in Equation
2, for example, concerns the form of change in the mean of
the common scores and not the observed scores. It is also
assumed that the common scores and the measurement
errors are independent, such that cov(zi, ��i ) � 0. The error
variate �i is assumed to have an expected value of 0 and
covariance matrix ��i.

In the latent curve model of Equation 1, an individual’s
latent response is specified to be a linear, weighted combi-
nation of the basis curves. Following this setup for a struc-
tured latent curve model, a person’s latent response is
expressed as a linear, weighted combination based on a
first-order Taylor polynomial taken with respect to the tar-
get function:

zi � f�	, t� � �1f�1�	, t� � �2f�2�	, t� � · · · � �Jf�J�	, t�, (5)

where f�j(	, t) is the first partial derivative of the target
function f(	, t) with respect to the jth parameter in 	:

f�j�	, t� �

f��, t�


�j
.

The coefficient �j is an individual-level deviate with ex-
pected value equal to zero, for j � 1, 2, . . . , J. By setting
the means of the individual coefficients �j equal to zero, the
expected value of the individual response curve in Equation
5 satisfies the expression in Equation 4; that is, E(zi) � f(	,
t). The partial derivatives of the target function given in
Equation 5 then serve to make up the columns of a factor
matrix �:

� � �
f�1��, 1� f�2��, 1� · · · f�J��, 1�
f�1��, 2� f�2��, 2� · · · f�J��, 2�

···
···

· · ·
···

f�1��, T� f�2��, T� · · · f�J��, T�
�. (6)

Assuming that the common scores follow the expression
of Equation 5 and the basis curves form the columns of �
as in Equation 6, the observed response yi in Equation 3
may be reexpressed as

yi � f�	, t� � �� � �i, (7)

where � � (�1, �2, . . . , �J)�. The expression of Equation 7
does not, however, follow a latent curve model as defined in
Equation 1 as a result of the inclusion of the target function,
f(	, t). Under the condition that the target function is in-
variant to a constant scaling factor, the target function can
be decomposed into a matrix of its basis curves and the
factor mean vector, � (see Browne, 1993, p. 177), such as

f�	, t� � ��.

Then the expression for yi in Equation 7 may be reexpressed
as

yi � �� � �� � �i. (8)

Next, assuming �i � � � �, the model in Equation 8
simplifies to

yi � ��i � �i,

where it is assumed that E(�i) � �. The factor mean vector
� may be obtained by solving the set of linear equations:
f(	, t) � ��. For the exponential function in Equation 2, �
� (�1, �2, 0)�.

In summary, the population curve is assumed to follow
the form of the target function f(	, t). At the level of the
individual, the random coefficient �ji represents the depen-
dence of the individual’s true curve on the jth basis curve.
The random coefficients in the vector �i, then, have the
same interpretation as the fixed parameters in 	 as specific
characteristics of change in the response. In addition, indi-
vidual latent curves close to the mean curve will be similar
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in shape to the mean curve; those far from the mean curve
can differ appreciably in shape.

Specification of a structured latent curve model is initially
based on identifying a function suitable for summarizing the
mean response, which is also invariant to a constant scaling
factor. Browne (1993) provided details for fitting a struc-
tured latent curve model using three different functions: the
Exponential, Logistic, and Gompertz. If all individuals are
observed according to the same data collection scheme, then
a plot of the sample means may be useful in identifying a
suitable mean function. Choosing a function for the means
may be more challenging when data are not balanced with
respect to time, because the sample mean curve cannot be
generated from the data. A plot of the individual curves
may, in some cases, be helpful in identifying a reasonable
mean structure; however, the shapes of the individual curves
do not necessarily characterize the shape of the mean curve
(Estes, 1956). Past experience with the behavioral response
or other theoretical considerations might also suggest a
reasonable mean form.

Structured Latent Curve Models for Multiple
Repeated Measures

The latent curve model for a single response variable is
extended for the simultaneous consideration of multiple
response variables. The model presented in this section
allows for different data collection schemes for different
individuals, as was done in the earlier discussion of the
latent curve model. First, let K be the number of variables
for which repeated measures are taken. The variables may
represent measures on the same individual, in which case
the variables are nested within individuals, or different
variables may be observed for distinguishable individuals
related by group membership, such as men and women
nested within couples or two parents and a target child
nested within households. Here, let i denote this grouping
unit, whether it be an individual or a group, and hereafter i
is referred to as an individual for convenience.

For ease of presentation, it is assumed here that each
individual has at least one observation for each repeated
measures variable, although the method basically requires at
minimum that an individual have data for at least one
measure. Let yki � (y1ki, . . . , yTki)� be individual i’s set of
responses on the kth response variable observed according
to time points tki � (1, . . . , Tki), where Tki is the total
number of observations on variable k for individual i, k �
1, . . . , K. As in the univariate case, the measures of time for
which any variable is observed may vary across individuals
so that individuals are not necessarily measured at the same
times. Further, the different response variables within indi-
viduals may be considered at different time points or have
different missing data patterns. That is, there is no require-
ment that any of the variables, either within or between

individuals, be measured according to the same time points.
A multivariate response vector yi is formed by stacking the
response vectors corresponding to the individual measures:

yi � �
y1i

y2i···
yKi

�.

The set of responses in yi is observed according to ti, where
ti is also formed by stacking the sets of time points specific
to the individual:

ti � �
t1i

t2i···
tKi

�.

The total number of observations for individual i is the sum
of all observations on all variables:

Ti � �
k�1

K

Tki.

The mean of this multivariate response vector is

� � �
�1

�2···
�K

�,

where �k � (�1k, �2k, . . . , �Tk)� is the mean response set
for variable k. Following the earlier development of the
structured latent curve model for a single variable, formu-
lation of the multivariate model begins by specifying the
mean forms of the individual variables. There is no restric-
tion that the means of the different variables follow the
same form. For example, the means of one variable may be
assumed to follow an exponential function and the means of
another a Gompertz function. The multivariate mean vector
then is assumed to follow a target function vector:

�
�1

�2···
�K

� � �
f1�	1, t�
f2��2, t�

···
fK��K, t�

�,

where fk(	k, t) is the target function for variable k.
The structured latent curve model for the multivariate

response set is formed by stacking the submodels of the
individual response variables (Goldstein, 1995; MacCallum
et al., 1997). Assuming that each response variable follows
a structured latent curve model, the model for the multivar-
iate set of responses, yi, is
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�
y1i

y2i···
yKi

� � �
�1i

�2i · · ·
�Ki

��
�1i

�2i···
�Ki

� � �
�1i

�2i···
�Ki

�
yi � �i�i � �i. (9)

The factor matrix, �i, is block diagonal. The diagonal block
elements are the factor loading matrices of the individual
response models, for k � 1, . . . , K. The matrix has rows
equal to the total number of observations across all variables
for individual i and columns equal to the total number of
basis curves for all K response variables. The vector �i is
the multivariate random coefficient vector containing indi-
vidual i’s entire set of random coefficients for all K vari-
ables: �i � (��1i, ��2i, . . . , ��Ki)�; �i is of length J, where J
is the total number of basis curves across all response
variables. The random coefficients correspond to individu-
al-level characteristics of change in the different response
variables. The vector �i is a multivariate vector of measure-
ment errors representing the individual-level discrepancies
between the observed values yi and the latent curves given
by �i�i. The errors are assumed to be independent of the
random coefficients and to be normally distributed with zero
means and a covariance matrix ��i:

�
�1i

�2i···
�Ki

� � N��
0
0
···
0
�, �

��1

��2�1 ��2···
···

· · ·
��K�1 ��K�2 · · · ��K

��. (10)

The diagonal submatrices of ��i, ��k, are the error covari-
ance matrices of the individual response variables. The
off-diagonal submatrices, ��l�k, are not symmetric covari-
ance matrices but rather contain the covariances between
the measurement errors of different variables, for 1 � l, k �
K, l 	 k. In many settings, it may be reasonable to assume
that measurement errors between variables are independent,
in which case ��i would be a block diagonal matrix:

��i � �
��1

��2 · · ·
��K

�.

At the individual level, the random coefficients are as-
sumed to be multivariate normal with mean vector � and
covariance matrix �, where

� � E�
�1i

�2i···
�Ki

� � �
�1

�2···
�K

� (11a)

and

� � cov��i� � �
�1

�21 �2···
···

· · ·
�K1 �K2 · · · �K

�. (11b)

The matrix � is a symmetric block covariance matrix. The
diagonal blocks of � represent symmetric covariance ma-
trices of the random coefficients for the individual response
variables: �kk � cov(�ki, ��ki), k � 1, . . . , K. These co-
variance matrices represent information about individual
differences in response variables considered separately. The
off-diagonal blocks are matrices containing the covariances
between the random coefficients of different response vari-
ables: �lk � cov(�li, ��ki), 1 � l, k � K, l 	 k. These
submatrices represent the linear associations between char-
acteristics of change in the different response variables and,
thus, represent the added information of an analysis that
considers multiple response variables jointly. It is probably
most common to assume that � is unstructured to allow for
estimation of all covariances between random coefficients.
The model in Equation 9 and the assumptions in Equations
10, 11a, and 11b give the marginal mean vector and covari-
ance matrix of yi:

�i � �
�1i

�2i · · ·
�Ki

��
�1

�2···
�K

�
�i � �i���i � ��i.

Factor Analysis Model for Covariates

A factor analysis model for a separate set of covariates is
presented here. This component of the model is appropriate
for a set of normal variables considered to be related to one
or more latent variables. Such variables may be those whose
values are assumed to be stable over the course during
which the repeated measures are observed, or possibly ob-
served at one point in time, such as baseline measures of
covariates. In a factor analysis model, it is assumed that the
set of manifest variables, denoted here by yc, is a linear
function of the common and unique factors (cf. Lawley &
Maxwell, 1971):

yc � �c
i � �i,

where �c is a P 
 Q factor matrix with loadings �c �
(�1, . . .)�, 
i is a Q 
 1 common factor vector, and �i is a
Q 
 1 vector of uniquenesses. The factor has mean � and
covariance matrix . It is assumed that the unique factors
are normally distributed with mean zero and covariance
matrix ��. The covariances among the uniquenesses are
assumed to be zero, but the variances may differ between
variables. The variances of the uniquenesses are also as-
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sumed to be nonnegative and uncorrelated with the factors.
Under the model, it is assumed that the linear associations
among the observed variables are accounted for by the
latent variables (Browne, 1982).

It is necessary to set constraints on model parameters to
help remove the indeterminacy of a model with no such
restrictions. This is typically done by assuming either that
the common factors have unit variance or that the scale on
which a factor is measured is equal to that of one of its
measured variables. Such restrictions, however, do not en-
sure identifiability of the model (see Lawley & Maxwell,
1971). The preceding model assumptions imply that yc is
normal with expected value and covariance matrix

�c � �c�

and

�c � �c��c � ��.

The factor analysis model for covariates also allows for
missing data in the set of observed variables (Finkbiner,
1979). This may be handled by creating an index vector
with elements corresponding to the observed values of yc.
Let k � [1, 2, . . . , P]�. For each individual, the pattern of
observations in yc is specified by ki. For example, assuming
a model for three observed covariates, individual i with
responses to the first and third manifest variables would
have ki � [1, 3]�. The individual’s data vector would have
data values corresponding to [yc]k. Let yci denote an indi-
vidual’s data vector that may be incomplete. The factor
analysis model that allows for missing data follows as

yci � ��c
i � �i�k � �ci
i � �i,

where �ci and �i have rows corresponding to observations
in yci. Allowing for individuals to have different observed
data patterns in the covariates, the mean vector and covari-
ance matrix of yc are

�ci
� �ci�

and

�ci
� �ci��ci � ��i.

The order of the mean vector �ci
and the covariance matrix

�ci
of the manifest covariates is Pi, where Pi is the number

of manifest variables observed for individual i.

The Full Model

Following Browne (1993), the structured latent curve
model for multiple normal repeated measures is combined
with a factor analysis submodel for covariates. The full
model allows for estimation of the covariances between the
random coefficients in the second level of the structured

latent curve model and a set of latent covariates. Changing
earlier notation, let yRi denote the response vector corre-
sponding to the set of repeated measures variables, with yci

again being the response vector corresponding to the co-
variates. Similar to the steps taken to form the multivariate
response vector for the repeated measures, the responses to
both the repeated measures and the covariates are stacked to
form a single response vector: yi � (y�Ri, y�ci)�, where yi now
represents a stacked vector of observed scores for the ith
case. The full model is

� yRi

yci
� � � �Ri

�ci
�� �i


i
� � � �i

�i
�

yi � �i�i � �i,

where yi is a response vector whose length is given by the
number of responses across the repeated measures variables
(Ti) and the number of responses to the set of covariates
(Pi). The factor loading matrix �i is partly a function of the
parameters characterizing change in the mean response and
the times of measurement corresponding to the repeated
measures, that is, �Ri � �Ri(	, ti), and the factor loadings
corresponding to the factor analysis model for the covari-
ates, that is, �ci � �ci(�). The matrix �i includes the
subscript i so that, for individual i, its rows correspond to
the number and actual times of measurement by which the
repeated measures are observed as well as the number of
covariates observed; conversely, the number of columns in
�i is the same across all individuals. The coefficient vector
�i is a stacked (J � Q) vector of the random coefficients and
the factors. The variate �i is a stacked (Ti � Pi) vector of
measurement errors corresponding to the structured latent
curve model for the repeated measures and the factor anal-
ysis model for the covariates. Assuming that the expected
value of �i is E(�i) � �, the mean vector and covariance
matrix of yi are

�i � �i�

and

�i � �i��i � �i,

where  is a symmetric block covariance matrix of the
random coefficients of the multivariate structured latent
curve model and the latent covariates:

 � � �
� 

�.

Block elements of  characterize the linear associations
among the random coefficients of the latent curve model
(�), the latent covariates (), and the associations be-
tween the stochastic coefficients of the two submodels
(�). That is, � contains the variances and covariances of
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the different characteristics of change in the repeated mea-
sures. The matrix  contains the variances and covariances
of the latent covariates. The matrix � contains the covari-
ances between the characteristics of change in the set of
repeated measures and the latent covariates. This latter
matrix provides the information gained by treating the re-
peated measures and the latent covariates simultaneously.
Finally, variation within individuals is summarized in the
covariance matrix �i, which is assumed to be block diag-
onal such that the measurement errors of the repeated mea-
sures and the uniquenesses of the covariates are indepen-
dent. For cases of unbalanced data, the covariance matrix of
the measurement errors is

�i � � �ei

��i
�,

where the rows of each submatrix correspond to the pattern
of observed responses for individual i. The matrices 
and �i that characterize between-individual and within-
individual variability, respectively, are taken to be
positive– definite.

Missing Data

Missing data on either the repeated measures or the co-
variates are possible. Within individuals, the set of repeated
measures may be observed according to different time
points or for a different number of occasions, either of
which may occur by design or possibly by attrition, for
example. Between individuals, the repeated measures may
also be observed at different time points or for a different
number of occasions. Generally, the model presented allows
for different patterns of observed data both within and
between individuals. In the case of missing data, the model
may be valid when the reason for the missing data is
ignorable (Little & Rubin, 1987; Rubin, 1976), and thus the
data are missing at random. That is, valid inference is based
on the assumption that any missing data are independent of
the reason for their absence (Laird, 1988). In cases of data
not missing at random, a random-coefficient pattern mixture
model may be considered (Hedeker & Gibbons, 1997).

Estimation

Standard software packages for the estimation of struc-
tural equation models, such as LISREL, AMOS, and Mplus,
may be used for estimation of a random coefficient model
that may also include a factor analysis model for covariates.
When data are complete and individuals are observed ac-
cording to the same data collection scheme (even if intervals
are unequally spaced), software programs that implement an
estimation procedure based on sufficient statistics, such as a
sample mean vector and covariance matrix, may be used to
estimate the model. Willett and Sayer (1994) provided de-

tails for fitting a latent curve model with LISREL. For cases
in which the repeated measures are balanced with respect to
time but some observations of either the repeated measures
or the covariates are missing, software programs imple-
menting estimation procedures based on raw data, such as
LISREL Version 8.5, which implements full information
maximum likelihood estimation, may be used to estimate
the model. When the repeated measures are observed ac-
cording to different time points, however, software that
allows for the factor matrix, �i, to vary across individuals is
needed. In these latter cases, software programs such as
SAS (e.g., PROC NLMIXED) and Mx (Neale, Boker, Xie,
& Maes, 2002) may be used. Fitting structured latent curve
models typically involves constraints on the factor loading
matrix to allow for some parameters to enter nonlinearly.
Depending in part on how the data are collected (i.e.,
whether the data are complete or balanced with respect to
times of measurement), some forms of the structured latent
curve model may be fitted with standard software, such as
LISREL, whereas others may require specialized software,
such as Mx.

Example

Data from a learning study were used to illustrate the
method.1 The data represent performance on two procedural
tasks developed for the assessment of quantitative and ver-
bal skill acquisition. For each task, participants were re-
quired to learn a set of declarative rules for evaluating
characteristics of visual stimuli presented in series. Tasks
were given together in blocks, with a mixed order within
blocks. Both response times and accuracy scores were re-
corded for a total of 384 trials for each task. Data for 228
individuals whose average accuracy score across trial
blocks was 80% or better on both tasks are considered here.
Restricting the sample to individuals with higher accuracy
levels was done to reduce any influence of a speed–accuracy
trade-off on response time scores. Response times for each
task were aggregated separately into 12 blocks of 32 trials
each. Aggregated data represent the median time to respond
within blocks. In addition to the procedural learning tasks,
participants were given a battery of tasks designed to mea-
sure working memory (WM). The set of WM measures was
hypothesized to follow a factor analysis model such that a
single latent measure of WM was assumed to give rise to the
observed task scores, with provisions made for the errors of
measurement contained in the observed scores. A subset of
204 individuals had complete data for the WM battery. The
goals of the present analysis were to describe (a) the mean
response times on the quantitative and verbal procedural

1 The data were provided by Scott Chaiken of the Armstrong
Laboratory, Brooks Air Force Base.
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tasks separately, (b) the variation and covariation among
individual-level characteristics of change in response times
on the two tasks, and (c) the covariation among the indi-
vidual-level characteristics of change in response times and
a latent measure of WM to assess the role of WM in
procedural learning. One approach to including WM as a
correlate of procedural learning is to create a composite
variable by taking a weighted sum of scores from the
individual tests. Browne and du Toit (1991) incorporated a
similarly created composite variable into a structured latent
curve model for responses to a single learning task. In their
model, the composite variable, assumed to be measured
without error, is considered a correlate of the individual-
level weights. Browne (1993) then considered a latent vari-
able model for covariates and incorporated this into a struc-
tured latent curve model for a single learning variable.

Procedural Learning Tasks

Let yQi and yVi denote the sets of response times on the
quantitative (Q) and verbal (V) procedural tasks, respec-
tively, for individual i, i � 1, . . . , 228. For each task, the set
of responses yki contained median response times for 12
blocks, that is, t � (1, 2, . . . , 12)� for task k, k � Q, V. In
all cases, data for both tasks were complete and balanced
with respect to trial blocks. Figure 1 shows a 10% sub-
sample of responses on each task, separately, across trial
blocks. Observed mean responses on the two tasks are
shown separately in Figure 2. As can be seen in Figure 2,
mean responses on both tasks were characterized by an
initial rapid decrease followed by a slow, decreasing trend
that leveled off during the final trials. A negatively accel-
erated exponential function decreasing monotonically to an
asymptote that was greater than zero seemed appropriate for
each mean response set (Meredith & Tisak, 1990, p. 117):

�k � f�	k, t� � �1k 	 ��1k 	 �2k� exp���3k�t 	 1�� � �tki,

k � Q, V,

where, for task k, �1k and �2k represent potential and initial
response times, respectively, and �3k is the population initial
rate of change. The parameters of the model are interpreted
with regard to different aspects of the learning process. At
the first trial block, the function value is equal to �2k, the
coefficient representing response time on the task at the start
of the series. As trial blocks approach infinity, the function
value is equal to �1k, the true response time at the lower
asymptote, thus representing potential performance. Finally,
�3k represents the initial rate of change in response time.
Considering performance on the two procedural tasks si-
multaneously, a structured latent curve model for yi �
(y�Qi, y�Vi)� was

� yQi

yVi
� � � �Q

�V
�� �Qi

�Vi
� � � �Qi

�Vi
�

yi � �R�i � �i,

where �R was a (24 
 6) block diagonal matrix containing
basis curves for both procedural learning tasks, �i was a
(6 
 1) stacked vector of random coefficients for the two
tasks, and �i was a (24 
 1) error variate. For the kth
procedural learning task, the target function and its corre-
sponding three basis curves for the exponential function
were

Target function:

f �	k, t� � �1k 	 ��1k 	 �2k� exp���3k�t 	 1��

Lower response time asymptote basis curve:

f �1�	k, t� �

f �	k, t�


�1k
� 1 	 exp���3k�t 	 1��

Initial response time basis curve:

f �2�	k, t� �

f�	k, t�


�2k
� exp���3k�t 	 1��

Figure 1. Subsample (10%) of repeated response time (RT)
scores on the quantitative (top) and verbal (bottom) procedural
learning tasks.
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Initial rate of change in response time basis curve:

f �3�	k, t� �

f �	k, t�


�3k
� ��1k 	 �2k��t 	 1� exp���3k�t 	 1��.

In the current application, the factor matrix �R was block
diagonal with six columns:

�R

� �
f�1Q�1, 	Q� f�2Q�1, 	Q� f�3Q�1, 	Q� 0 0 0
f�1Q�2, 	Q� f�2Q�2, 	Q� f�3Q�2, 	Q� 0 0 0

···
···

···
···

···
···

f�1Q�12, 	Q� f�2Q�12, 	Q� f�3Q�12, 	Q� 0 0 0
0 0 0 f�1V�1, 	V� f�2V�1, 	V� f�3V�1, 	V�
0 0 0 f�1V�2, 	V� f�2V�2, 	V� f�3V�2, 	V�
···

···
···

···
···

···
0 0 0 f�1V�12, 	V� f�2V�12, 	V� f�3V�12, 	V�

�,

where 	Q � (�Q1, �Q2, �Q3)� and 	V � (�V1, �V2, �V3)� were
the parameters of the response time target functions for the
quantitative and verbal tasks, respectively. The random
coefficients in �i have substantive interpretations analogous
to the fixed coefficients of the target functions. The two
differ in that coefficients of the target functions represent
change characteristics for the mean response, and the ran-
dom coefficients represent change characteristics particular
to each individual. Although the expected values of the
common scores were assumed to follow the monotonic

functional form of f(	, t), the common scores themselves
were not.

Two competing structures for the within-individual error
matrix were examined, considering each task separately. In
one model, within-subject errors were assumed to be inde-
pendent and normally distributed with a mean of zero and
constant variance across trial blocks: �ki � N(0, �k

2I), where
I was a 12 
 12 identity matrix and �k

2 was a variance
coefficient for task k, k � Q, V. In a competing model, the
errors were assumed to have an autoregressive structure to
allow for a decreasing interdependence of within-subject
errors between trial blocks as distances between blocks
increased:

�k
2�k

�r�s�,

where �k
2 is the error variance and �k is the autocorrelation

coefficient, with r and s denoting the rows and columns of
the covariance matrix �k, k � Q, V (Browne, 1993). Treat-
ing responses to each procedural task separately, the two
models distinguished by the different error structures were
compared by calculating the Akaike information criterion
(AIC). This index of model fit takes into account the number
of parameters, penalizing models with greater numbers. The
AIC may be defined as

AICj � �2 ln L � 2qj,

where ln L is the natural log of the likelihood function value
and q is the number of parameters in the model. In this form
of the index, the model yielding the smallest value is pre-
ferred. On the basis of a comparison of AIC values, the
model that included the autoregressive error structure for
within-individual variation seemed preferable for both out-
comes and was provisionally accepted.2 Considering the
tasks together, the within-individual errors between tasks
were assumed to be independent. That is, �� was block
diagonal:

�� � � �Q

�V
�.

The distribution of the random coefficients was assumed
to be

�i � N��, ��,

2 For the quantitative responses, the AIC fit index values were
4,845.3 (assuming independent and constant error variance) and
4,802.9 (assuming an autoregressive error structure). For the ver-
bal responses, the AIC fit index values were 6,533.9 (assuming
independent and constant error variance) and 6,427.9 (assuming an
autoregressive error structure).

Figure 2. Observed trial block means on the quantitative (top)
and verbal (bottom) procedural tasks. RT � response time.
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where � � (�Q, �V) was the vector of response time factor
means. The expected values of the factor means were ob-
tained by solving the set of linear equations: fk(	k, t) �
�k�k. Here �Q � (�Q1, �Q2, 0)� and �V � (�V1, �V2, 0)�. The
covariances among the random coefficients were given by �:

� � � �Q

�VQ �V
�.

The matrices �Q and �V were symmetric covariance ma-
trices for the random coefficients of the two learning models
for quantitative and verbal performance, respectively. The
off-diagonal matrix, �VQ, was a nonsymmetric matrix con-
taining the covariances between the random coefficients of
the two response time models:

�VQ � � cov��V1, �Q1� cov��V1, �Q2� cov��V1, �Q3�
cov��V2, �Q1� cov��V2, �Q2� cov��V2, �Q3�
cov��V3, �Q1� cov��V3, �Q2� cov��V3, �Q3�

�.

The matrix �VQ represented the linear associations between
the random coefficients of the two models obtained by
considering the two tasks simultaneously. Given assump-
tions about the within-individual and between-individual
sources of variation, the mean vector and covariance matrix
of yi were

�i � �Ri�

and

�i � �R���R � ��.

Working Memory Battery

On a separate occasion, a subset of 204 participants were
administered a battery of tasks designed to measure WM
(see Kyllonen & Christal, 1990). Four tests were considered
in which two, q1 and q2, were quantitative in nature and two
others, v1 and v2, were verbal in nature. The four observed
measures of WM were assumed to follow a factor analysis
model. Let ci � (q1i, q2i, v1i, v2i)� represent the set of
responses for individual i on the four tasks. It was assumed
that ci followed a one-factor model:

�
q1i

q2i

v1i

v2i

� � �
�1

�2

�3

�4

��i� � �
�1i

�2i

�3i

�4i

�
ci � �i � �i,

where � � (�1, . . . , �4)� was a vector of factor loadings and
i was a latent measure of WM. The vector �i � (�1i, . . . ,
�4i)� was the set of measurement errors (i.e., uniquenesses)
resulting from the regression of ci on i. It was assumed that

the mean of i was �. The variance of i was set equal to
unity: var(i) � 1. The errors were assumed to be normally
distributed with zero means and symmetric variance and
covariance matrix ��; the uniquenesses were assumed to be
independent with possibly different variances:

�i � N�0, ���,

where

�� � �
��1

2

��2

2

��3

2

��4

2
�.

The error variances were assumed to be nonnegative, and
the errors were assumed to be independent of the factor.
With these assumptions, the expected value and covariance
matrix of the observed covariates were

�c � ��

and

�c � ��� � ��.

The one-factor model was fitted to scores from the WM
task battery using maximum likelihood estimation, �2(5,
N � 204) � 6.72. The sample correlation coefficients
ranged from .28 to .45. The maximum absolute value of the
discrepancies between the fitted and sample correlations
was less than .05, suggesting that the sample correlations
were reasonably accounted for by a single factor. Model fit
was further evaluated by calculating the root mean square
error of approximation (RMSEA; Steiger, 1990). The factor
analysis model for the battery of measures yielded an
RMSEA value of .041, suggesting a reasonable fit to the
data (Browne & Cudeck, 1992).

The Full Model

The models for response time scores on the two proce-
dural learning tasks and the factor analysis model for the
WM battery were incorporated into a single model. Let yi �
(y�Qi, y�Vi, y�ci)� be the response vector for individual i with
complete data on all variables, composed by stacking the
individual response sets of quantitative and verbal response
times and WM task scores. A subset of 24 individuals were
missing data for the WM task battery. The tasks examined
here represented a subset of tasks required for a much larger
research project. Some individuals were unable to complete
all components of the project as a result of the large number
of tasks administered and the time necessary to complete
them. For this analysis, it seemed reasonable to assume that
the missing data on the WM task battery were missing at
random. Specifically, there was no indication that the rea-

345STRUCTURED LATENT CURVE MODELS



sons for the missing data were related to how individuals
would have performed had they been administered the bat-
tery. Therefore, the data were considered to be missing at
random in the sense that the missing data mechanisms were
ignorable (Little & Rubin, 1987; Rubin, 1976). For individ-
uals missing the battery of WM tasks, the response set was
composed of scores from only the procedural learning tasks,
that is, yi � (y�Qi, y�Vi)�. Thus, the number of covariates was
equal to Pi, where Pi � 4 for individuals who completed the
WM battery and Pi � 0 for those who did not.

Considering simultaneously the responses to the proce-
dural learning tasks and the WM battery, the model for yi

was assumed to be

� yQi

yVi

yci

� � � �Q 0 0
0 �V 0
0 0 �c

�� �Qi

�Vi


i

� � � �Qi

�Vi

�i

�
yi � �i�i � �i, (12)

where the factor matrix �i � �i(	�, t�, ��) was block
diagonal and the coefficient vector �i � (��Qi, ��Vi, 
i)�
contained the random coefficients for the two procedural
learning models and the WM factor. Within individuals, the
errors were assumed to have distribution

�i � N�0, �i�, (13)

where �i was of order (24 � Pi). The matrix �i was
assumed to be block diagonal so that errors between tasks
were independent:

�i � � �Q

�V

��

�.

The error matrix �i was assumed to be homogeneous across
individuals but could vary with regard to order to handle
missing data in the WM battery. That is, for individuals with
complete data, �i had rows corresponding to the 24 re-
sponses of the repeated measures variables along with the
four rows corresponding to the set of WM task measures.
For individuals with incomplete data, �i had rows corre-
sponding to the 24 responses on the procedural tasks.
Within individuals, the measurement errors were assumed
to be independent of the random coefficients.

The random coefficients and the latent covariates were
assumed to have distribution

�i � N���, �, (14)

where �� � (��Q, ��V, �)�. The covariance matrix among
these coefficients was represented by , where  was a
symmetric block covariance matrix of the random coeffi-
cients of the two procedural tasks and the latent WM vari-
able. Specifically,

 � � �Q

�VQ �V

Q V 1
�,

where �Q and �V were the individual covariance matrices
for the random coefficients of the quantitative and verbal
learning models, respectively. The submatrix �VQ repre-
sented the covariances between the random coefficients of
the latent curve models for the two learning tasks. The
variance of the latent variable was set to unity: var() � 1.
The submatrices �Q and �V represented the covariances
between the random coefficients of the latent curve models
for the procedural tasks and the latent measure of WM.

Given the model for yi in Equation 12 along with as-
sumptions in Equations 13 and 14, the mean vector and
covariance matrix of yi were

�i � �i�� (15a)

and

�i � �i��i � ��. (15b)

This implied that the marginal distribution of yi was normal
with mean (Equation 15a) and covariance matrix (Equation
15b)

yi � N��i, �i�.

The orders of �i and �i when data were complete were each
28, the total number of repeated measures on the two
procedural tasks plus the number of manifest covariates on
the WM battery. The log-likelihood function was

ln L � C 	
1
2 �

i�1

N

�ln	�i	 � q�i�i
�1qi�,

where C was a constant independent of the model parame-
ters, and qi � yi � �i�. This form of the log-likelihood
function was based on the raw data, rather than sufficient
statistics such as a mean vector and covariance matrix, and
so required an estimation procedure such as that described
by Jennrich and Schluchter (1986). A computer program
allowing one to obtain simultaneous maximum likelihood
estimates of the model has been written in GAUSS Version
3.6 (Aptech Systems, 2001).3 A path diagram of the full
model is presented in Figure 3. Not represented in the figure
are the correlations among the quantitative and verbal learn-
ing characteristics and the latent measure of WM.

Maximum likelihood estimates of parameters are pre-

3 Sample data and SAS PROC NLMIXED code for fitting a
version of the model are available on the Web at http://dx.doi.org/
10.1037/1082-989x.9.3.xxx.supp.
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sented in the Appendix for the separate components of the
full model. The estimated variances of and covariances
between the random coefficients and the WM factor are
presented separately in Table 1. Estimated mean initial

response time scores for the quantitative and verbal tasks
were 16.5 and 21.3, respectively. Estimated mean potential
response time scores for the quantitative and verbal tasks
were 8.63 and 6.85, respectively. Mean rates of change in

Figure 3. Path diagram of full model. QRT � quantitative response time; VRT � verbal response
time; WM � working memory.
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the quantitative and verbal tasks were .701 and .721, re-
spectively. The estimated coefficients were all large relative
to their estimated standard errors. As a result, mean perfor-
mance on each task was given by the estimated equations:

�̂Qti � 8.63 � 7.87 exp��.701�t 	 1��

and

�̂Vti � 6.85 � 14.4 exp��.721�t 	 1��.

Plots of the fitted mean curves with the observed mean
curves are presented in Figure 4.

In the case of a model for a single procedural task, the
basis curves considered across the 12 trial blocks in con-
junction with the individual-level random coefficients dic-
tate the actual shape of an individual’s true curve. Plots of
the basis curves using estimated values for quantitative
learning are given in Figure 5. The plots were comparable
for both procedural tasks, so only those for the quantitative
task are shown. The basis curve for the lower response time
asymptote increased monotonically from zero at the first
trial block, rising quickly toward an asymptote of one by
about the 12th trial block. The basis curve corresponding to
initial response time decreased monotonically from one at
the first trial block, falling quickly toward an asymptote of
zero by about the 12th trial block. The estimated mean
values for the random coefficients corresponding to the first
two basis curves were positive such that the contributions of
the basis curves to the true scores for individuals tended to
be in the same direction as those presented in Figure 5.
Finally, the basis curve for initial rate of change in response
times decreased quickly from zero to about a value of �4
shortly after the second trial block and then gradually in-
creased back toward an asymptote of zero. The mean value
for the random coefficients corresponding to the third basis
curve was zero, suggesting that approximately half of the
individuals had contributions from the third basis curve that
were opposite in sign.

Individual differences in the three aspects of response

time for a given task can be studied by examination of the
variances of the random coefficients. The estimated vari-
ances of the random coefficients for each task were all large
relative to their estimated standard errors, suggesting, for
each task, individual differences in these aspects of response
times. As might be done in an analysis in which a single
repeated measure is considered, it is also interesting to
examine the covariances between the different random co-
efficients within tasks. For the quantitative procedural task,
latent measures of initial and potential response times had

Figure 4. Fitted trial block means on the quantitative (top) and
verbal (bottom) procedural tasks. RT � response time.

Table 1
Estimated Covariances and Correlations Among Random Coefficients and the Working Memory (WM) Factor

Coefficient

Quantitative task Verbal task

WM Potential (�Q1) Initial (�Q2) Rate (�Q3) Potential (�V1) Initial (�V2) Rate (�V3)

�Q1 4.19 (0.423) 0.606 �0.148 0.633 0.420 �0.192 �0.177
�Q2 7.42 (0.985) 35.8 (3.46) 0.212 0.267 0.408 �0.126 �0.016
�Q3 �0.128 (0.073) 0.538 (0.205) 0.180 (0.030) �0.133 �0.091 0.164 0.343
�V1 1.66 (0.235) 2.05 (0.606) �0.073 (0.049) 1.65 (0.207) 0.307 �0.220 �0.216
�V2 8.24 (1.47) 23.4 (4.20) 0.372 (0.320) 3.78 (0.976) 92.1 (8.82) �0.094 0.127
�V3 �0.205 (0.082) �0.392 (0.232) 0.036 (0.018) �0.147 (0.059) �0.468 (0.391) 0.272 (0.044) 0.145
 �0.363 (0.173) �0.093 (0.519) 0.146 (0.041) �0.278 (0.125) 1.22 (0.781) 0.076 (0.048) 1.0

Note. Variances are on the diagonal, covariances are below the diagonal, and correlations are above the diagonal. Standard errors are in parentheses. The
variance of the WM factor was set to unity.
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covariance 7.42, with a corresponding correlation of .61,
suggesting a moderate tendency for individuals with high
initial response times to also have high potential response
times. For this task, the estimated covariances between
initial rate of learning and initial and potential performance
levels were �.148 and .212, respectively. The correlation
between initial rate of learning and initial performance was
.21, suggesting a weak but positive association between
these two aspects of performance: Individuals whose initial
response time scores indicated fast performance at the start

of the trials tended to also have an initially fast rate of
change. The estimated 90% confidence interval for the
covariance between learning rate and potential performance
included zero as an interior point, suggesting no association
between these aspects of response times. For the verbal task,
initial and potential response times had covariance 3.78
with a corresponding correlation of .31, suggesting some
tendency for individuals with high initial verbal response
times to also have high verbal potential response times. The
correlation between initial rate of change and potential
performance was �.22, suggesting a weak but negative
association between these two aspects of performance: In-
dividuals who performed initially at a relatively fast rate
tended to also have low potential response times.

In evaluating the fit of the models to the procedural
learning data, fitted curves were compared with the ob-
served values on both tasks.4 Here a selection of individual
curves based on performance measures of the quantitative
task is shown in Figures 6 and 7, with the three best fitting
and the three worst fitting curves displayed. As can be seen
in Figure 6, the best fitting curves differed somewhat from
each other, with one showing very little fluctuation across
trial blocks and the other two, although beginning at differ-
ent levels at the first trial block, showing fairly smooth
decreases in response time, albeit at different rates, across
trial blocks; both curves leveled off by the latter part of the
trial period. In Figure 7, the top two displays represent the
worst fitting curves, characterized by great fluctuations in
performance during the earlier trial blocks, and then reach-
ing relative stability in the latter half of the trials. It is
interesting to note the general pattern of performance for
these two cases in particular. That is, response time was
relatively low at the start of the task, increased somewhat in
the trials immediately succeeding that task, and then grad-
ually dropped over the remaining trials, a pattern very
different from the mean curve. Individual learning curves
that show an initial slowing in performance, followed by an
increase in response time, exhibit learning rates that are
relatively large and positive. Finally, the third case is char-
acterized by fairly wild fluctuations throughout the process
and is not well fit by the model.

In treating the repeated measures of the two procedural
learning tasks simultaneously, it is of special interest to
study the estimated covariances between similar character-
istics of response time on each task, in that each represents
a different type of procedural learning. The estimated co-

4 Estimates of the random coefficients were based on the joint
multivariate normal distribution of yi and � (see Davidian &
Giltinan, 1995, Section 3.3; Vonesh & Chinchilli, 1997, Section
6.3). The random coefficients were the conditional expectation of
�	yi, where an estimate of � was the conditional expectation with
all parameters set at their maximum likelihood estimates: �̂ �
�̂�̂�i�̂i

�1yi.

Figure 5. Basis curves for the quantitative procedural learning
task.
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variance between initial performance on the two tasks was
23.4, with a corresponding correlation of .41. This suggests
a tendency for individuals with high initial quantitative
response times to also have high initial verbal response
times. The moderate correlation between the two estimates
of initial performance suggests that both share a quality
inherent to procedural learning but that each may also
capture a quality unique to the type of learning (i.e., quan-
titative vs. verbal). A similar pattern was found for potential
learning performance. The estimated covariance between
potential performance on both tasks was 1.66, with a cor-
relation of .63, suggesting a tendency for individuals with

lower asymptotic quantitative response times to also have
lower asymptotic verbal response times. The moderate cor-
relation between the two estimates of potential performance
was consistent with the findings for initial performance
levels. The estimated covariance between rates of learning
on the two tasks was 0.036, with a correlation of .16. This
suggests a tendency for individuals with fast response rates
on the quantitative task to also have fast response rates on
the verbal task, although the correlation itself was weak.
One may also go on to investigate the associations between
different aspects on different tasks (e.g., quantitative poten-
tial performance and verbal initial performance).

Figure 7. Three worst fitting curves for the quantitative proce-
dural learning task.

Figure 6. Three best fitting curves for the quantitative procedural
learning task.
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The latent measure of WM had an estimated mean of 6.32
and a standard error of 0.44. Estimates of the associations
between WM and the random coefficients of the latent curve
model are examined here. The WM factor and the random
coefficients relating to initial performance on the quantita-
tive and verbal procedural tasks had covariances of �0.093
and 1.22, respectively. The estimated 90% confidence in-
tervals for the covariances between the latent measure of
WM and initial performance levels on both learning tasks
included zero as interior points, suggesting no linear asso-
ciations between WM and initial learning performance on
either procedural task. The WM factor and the random
coefficients relating to potential performance on the quan-
titative and verbal procedural tasks had covariances of
�0.363 and �0.278, respectively, with corresponding cor-
relations of �.18 and �.22, respectively. These correlations
suggest a tendency for individuals with high scores on the
latent measure of WM to also have relatively low potential
response times on both procedural tasks, although these
correlations were relatively weak. Finally, the WM factor
and the random coefficients relating to the initial rate of
change in response times on the two procedural tasks had
covariances of 0.146 and 0.076, respectively. The correla-
tion corresponding to the covariance between WM and rate
of learning on the quantitative task was .34, suggesting a
tendency for individuals with a high latent WM score to also
exhibit high initial rates of change in quantitative response
times. The estimated 90% confidence interval for the co-
variance between WM and initial rate of change in verbal
response times included zero as an interior point, suggesting
no linear association between WM and rates of change in
verbal response times.

Discussion

This article has discussed the extension of the structured
latent curve model for the analysis of two or more repeated
measures variables that also includes a factor analysis
model for covariates related to the random coefficients at
the second level of the latent curve model. The multivariate
form of the model is useful in studies in which multiple
measures, each possibly characterized by a nonlinear form
of change, are observed over time and it is of interest to
study the patterns of covariation among the different change
features in the set of repeated measures. In a structured
latent curve model, the mean response is assumed to follow
a prespecified function that may include parameters that
enter in a nonlinear manner. A first-order Taylor polynomial
taken about the mean function is then used to define col-
umns of a factor matrix. The columns of the factor matrix,
referred to as basis curves, define different aspects of
change in the response variable over time. The parameters
of the factor matrix, some of which may enter nonlinearly,
are fixed across individuals. Individual latent curves are

assumed to be a linear combination of the basis curves and
a set of random coefficients that may be unique to each
individual. This means that the basis curves may be
weighted differently from one person to another, resulting in
curves that may vary with regard to the different aspects of
change. The result is that the individual latent curves may
differ in form from the mean curve. The random coefficients
of the model enter linearly, allowing estimation of the
model to proceed through the use of methods typical for
linear models. This kind of model is considered to be
conditionally linear with regard to its random coefficients
(Blozis & Cudeck, 1999).

The random coefficients also share the same substantive
interpretation as the coefficients that define the mean func-
tion; that is, they define different characteristics of change
but do so at the individual level. The variances of the
random coefficients measure the degree of individual dif-
ferences in change characteristics. Covariances among the
random coefficients are measures of the linear associations
among them. With the addition of a factor analysis model
for covariates, it is also possible to study the associations
between characteristics of change in the repeated measure-
ments and a set of latent covariates.

The particular choice of a model when change is nonlin-
ear is important when the focus of the analysis is on indi-
vidual differences in change. It is worth keeping in mind,
however, that the model one chooses for representing
change in a variable is probably at best an approximation. A
model is perhaps most useful when its parameters are di-
rectly interpretable in light of the behavior under investiga-
tion. A common choice for fitting nonlinear responses is a
polynomial, often because polynomials are easy to estimate
with standard estimation procedures. Cudeck and du Toit
(2002) discussed alternative ways in which a common qua-
dratic function may be transformed to yield different inter-
pretations of model parameters. In cases in which a poly-
nomial is not suitable, a nonlinear function may be
preferred. Many different nonlinear response forms are pos-
sible, offering the practitioner greater flexibility over poly-
nomial functions (see Gallant, 1987; Pinheiro & Bates,
2000). However, handling individual differences in the co-
efficients of a nonlinear model can be problematic. That is,
random coefficients that enter the model in a nonlinear way
introduce estimation difficulties not found with linear mod-
els owing to difficulties in evaluating the marginal likeli-
hood. Recent efforts, however, have made progress in this
area. Procedures such as those discussed by Davidian and
Giltinan (1995) and Cudeck and du Toit (2003) approach
the problem by direct maximization of the marginal likeli-
hood. Other approaches to the estimation of nonlinear mod-
els with random coefficients have relied on linear approxi-
mations (e.g., Lindstrom & Bates, 1990). The method
discussed here is a restricted form of a nonlinear random
coefficient model in that the random coefficients may enter
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the model only in a linear manner, thus eliminating related
estimation difficulties.

References

Aptech Systems. (2001). The GAUSS system Version 3.6. Maple
Valley, WA: Aptech Systems, Inc.

Blozis, S. A., & Cudeck, R. (1999). Conditionally linear mixed-
effects models with latent covariates. Journal of Educational
and Behavioral Statistics, 24, 245–270.

Bock, R. D. (1989). Measurement of human variation: A two-stage
model. In R. D. Bock (Ed.), Multilevel analysis of educational
data (pp. 319–342). Hillsdale, NJ: Erlbaum.

Browne, M. W. (1982). Covariance structures. In D. M. Hawkins
(Ed.), Topics in applied multivariate analysis (pp. 72–141).
New York: Cambridge University Press.

Browne, M. W. (1993). Structured latent curve models. In C. M.
Cuadras & C. R. Rao (Eds.), Multivariate analysis: Future
directions 2 (pp. 171–197). Amsterdam: Elsevier Science.

Browne, M. W., & Cudeck, R. (1992). Alternative ways of assess-
ing model fit. Sociological Methods and Research, 21, 230–258.

Browne, M. W., & du Toit, S. H. C. (1991). Models for learning
data. In L. M. Collins & J. L. Horn (Eds.), Best methods for the
analysis of change (pp. 47–68). Washington, DC: American
Psychological Association.

Bryk, A. S., & Raudenbush, S. W. (1987). Application of hierar-
chical linear models to assessing change. Psychological Bulle-
tin, 101, 147–158.

Bryk, A. S., & Raudenbush, S. W. (1992). Hierarchical linear
models: Applications and data analysis methods. Newbury
Park, CA: Sage.

Cudeck, R. (1996). Mixed-effects models in the study of individual
differences with repeated measures data. Multivariate Behav-
ioral Research, 31, 371–403.

Cudeck, R., & du Toit, S. H. C. (2002). A version of quadratic
regression with interpretable parameters. Multivariate Behav-
ioral Research, 37, 501–519.

Cudeck, R., & du Toit, S. H. C. (2003). Nonlinear multilevel
models for repeated measures data. In N. Duan & S. P. Reise
(Eds.), Multilevel modeling: Methodological advances, issues
and applications (pp. 1–24). Mahwah, NJ: Erlbaum.

Cudeck, R., & Klebe, K. J. (2002). Multiphase mixed-effects
models for repeated measures data. Psychological Methods, 7,
41–63.

Curran, P. J., Stice, E., & Chassin, L. (1997). The relation between
adolescent alcohol use and peer alcohol use: A longitudinal
random coefficient model. Journal of Consulting and Clinical
Psychology, 65, 130–140.

Davidian, W., & Giltinan, D. M. (1995). Nonlinear models for
repeated measurement data. London: Chapman & Hall.

Estes, W. K. (1956). The problem of inference from curves based
on group data. Psychological Bulletin, 53, 134–140.

Finkbiner, C. (1979). Estimation for the multiple factor model
when data are missing. Psychometrika, 44, 409–420.

Gallant, A. R. (1987). Nonlinear statistical models. New York:
Wiley.

Goldstein, H. (1995). Multilevel statistical models (2nd ed.). New
York: Wiley.

Hedeker, D., & Gibbons, R. D. (1997). Application of random-
effects pattern-mixture models for missing data in longitudinal
studies. Psychological Methods, 2, 64–78.

Jennrich, R. I., & Schluchter, M. D. (1986). Unbalanced repeated
measures models with structured covariance matrices. Biomet-
rics, 42, 805–820.

Kreft, I., & de Leeuw, J. (1998). Introducing multilevel modeling.
Thousand Oaks, CA: Sage.

Kyllonen, P. C., & Christal, R. E. (1990). Reasoning ability is
(little more than) working-memory capacity. Intelligence, 14,
389–433.

Laird, N. M. (1988). Missing data in longitudinal studies. Statistics
in Medicine, 7, 305–315.

Lawley, D. N., & Maxwell, A. E. (1971). Factor analysis as a
statistical method. New York: Elsevier.

Lindstrom, M. J., & Bates, D. M. (1990). Nonlinear mixed effects
models for repeated measures data. Biometrics, 46, 673–687.

Little, R., & Rubin, D. (1987). Statistical analysis with missing
data. New York: Wiley.

Longford, N. T. (1993). Random coefficients models. Oxford,
England: Oxford University Press.

MacCallum, R. C., Kim, C., Malarkey, W. B., & Kiecolt-Glaser,
J. K. (1997). Studying multivariate change using multilevel
models and latent curve models. Multivariate Behavioral Re-
search, 32, 215–253.

McArdle, J. J. (1988). Dynamic but structural equation modeling
of repeated measures data. In J. R. Nesselroade & R. B. Cattell
(Eds.), Handbook of multivariate experimental psychology (pp.
561–614). New York: Plenum.

McArdle, J. J., & Anderson, E. (1990). Latent variable growth
models for research on aging. In J. E. Birren & K. W. Schaie
(Eds.), The handbook of the psychology of aging (pp. 21–43).
New York: Plenum.

McArdle, J. J., & Epstein, D. (1987). Latent growth curves within
developmental structural equation models. Child Development,
58, 110–133.

McArdle, J. J., & Hamagami, F. (1992). Modeling incomplete
longitudinal and cross-sectional data using latent growth struc-
tural models. Experimental Aging Research, 18, 145–166.

Mehta, P. D., & West, S. G. (2000). Putting the individual back
into individual growth curves. Psychological Methods, 5, 23–
43.

Meredith, W., & Tisak, J. (1984, June). Tuckerizing curves. Paper
presented at the annual meeting of the Psychometric Society,
Santa Barbara, CA.

Meredith, W., & Tisak, J. (1990). Latent curve analysis. Psy-
chometrika, 55, 107–122.

Neale, M. C., Boker, S. M., Xie, G., & Maes, H. H. (2002). Mx:
Statistical modeling (6th ed.) Richmond: Department of Psychi-
atry, Virginia Commonwealth University.

352 BLOZIS



Pinheiro, J. C., & Bates, D. M. (2000). Mixed-effects models in S
and S-Plus. New York: Springer.

Rao, C. R. (1958). Some statistical methods for comparison of
growth curves. Biometrics, 14, 1–17.

Raudenbush, S. W., Brennan, R. T., & Barnett, R. C. (1995). A
multivariate hierarchical model for studying psychological
change within married couples. Journal of Family Psychology,
9, 161–174.

Reinsel, G. (1992). Multivariate repeated-measurement or growth
curve models with multivariate random-effects covariance
structure. Journal of the American Statistical Association, 77,
190–195.

Reinsel, G. (1994). Estimation and prediction in a multivariate
random effects generalized linear model. Journal of the Amer-
ican Statistical Association, 79, 406–414.

Rubin, D. B. (1976). Inference and missing data. Biometrika, 61,
581–592.

Scher, A. M., Young, A. C., & Meredith, W. M. (1960). Factor
analysis of the electro cardiogram. Circulation Research, 8,
519–526.

Shah, A., Laird, N., & Schoenfeld, D. (1997). A random-effects
model for multiple characteristics with possibly missing data.
Journal of the American Statistical Association, 92, 775–779.

Snijders, T., & Bosker, R. (1999). Multilevel analysis. London:
Sage.

Steiger, J. H. (1990). Structural model evaluation and modifica-
tion: An interval estimation approach. Multivariate Behavioral

Research, 25, 173–180.
Stoolmiller, M. (1995). Using latent growth curve models to study

developmental processes. In J. M. Gottman (Ed.), The analysis

of change (pp. 103–138). Mahwah, NJ: Erlbaum.
Tucker, L. R. (1958). Determination of parameters of a functional

relation by factor analysis. Psychometrika, 23, 19–23.
Tucker, L. R. (1966). Learning theory and multivariate analysis:

Illustration by determination of generalized learning curves. In
R. B. Cattell (Ed.), Handbook of multivariate experimental

psychology (pp. 476–501). Chicago: Rand McNally.
Vonesh, E. F., & Chinchilli, V. M. (1997). Linear and nonlinear

models for the analysis of repeated measurements. New York:
Marcel Dekker.

Weisberg, S. (1985). Applied linear regression (2nd ed.). New
York: Wiley.

Willett, J., & Sayer, A. (1994). Using covariance structure analysis
to detect correlates and predictors of individual change over
time. Psychological Bulletin, 116, 363–380.

Windle, M., & Windle, R. C. (2001). Depressive symptoms and
cigarette smoking among middle adolescents: Prospective asso-
ciations and intrapersonal and interpersonal influences. Journal

of Consulting and Clinical Psychology, 69, 215–226.

Appendix

Maximum Likelihood Estimates for the Full Model

Quantitative Procedural Learning Task

Potential performance: �̂Q1 � 8.63 (0.143).
Initial performance: �̂Q2 � 16.5 (0.405).
Initial rate: �̂Q3 � 0.701 (0.024).
Within-individual error variance: �̂Q

2 � 1.12 (0.056).
Within-individual error autocorrelation: �̂Q � .315 (.035).

Verbal Procedural Learning Task

Potential performance: �̂V1 � 6.85 (0.100).
Initial performance: �̂V2 � 21.3 (0.661).
Initial rate: �̂V3 � 0.721 (0.020).
Within-individual error variance: �̂V

2 � 1.97 (0.092).
Within-individual error autocorrelation: �̂V � .276 (.036).

Working Memory Battery

Factor mean: ̂ � 6.32 (0.442).
Factor loadings: �̂1 � 12.4 (0.875), �̂2 � 12.5 (0.880), �̂3 �

12.5 (0.881), �̂4 � 12.5 (0.889).
Uniquenesses: �̂1 � 223 (27.3), �̂2 � 211 (26.3), �̂3 � 208

(26.2), �̂4 � 341 (38.7).
Note. Standard errors are in parentheses.
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