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We investigate a method for the analysis of repeated observations, that couid arise in a clinical trial, in
which there are many treatment groups, the number of observations per subject is variable, and the
observations are unequally spaced. Changes in the mean of the outcome variable are described by curves
defined in the follow-up period. We develop a practical and computationally feasible approach in which
piecewise cubic polynomials with a large and fixed number of knots are used to parametrize the curves,
Penalized likelihood estimates are used to reduce the variability and obtain smooth curves for different
treatment groups. A leave-out-one-subject weighted cross-validation scheme is developed to choose the
smoothing parameter A which controls the smoothness of the curves. Some simplifying approximations
to the cross-validation criterion are discussed. A simulation study is performed to evaluate the method.
The result shows that using the A chosen by cross-validation, the maximum penalized likelihood fit gives
a smooth and acceptable estimate of the curves. The method is applied to AIDS clinical trial data.

KEY WORDS: Repeated measures, Penalized likelihood, Leave-out-one-subject, Cross-Validation,
Smoothing.

1. INTRODUCTION AND MOTIVATION

In many biomedical studies, serial measurements are collected over a period of
time for subjects allocated to one of several treatment groups. The aim of statistical
methods applied. to such longitudinal data is often to describe the changes in the
mean of the response variable over time, to examine the differences among groups,
and to describe the within-subject correlation structure (Diggle 1988, Laird and
Ware 1982). Most statistical approaches assume that all the observations are mea-
sured at a few fixed time points. However frequently the observations are measured
at irregular times, in which case, one would like to describe the changes by curves
defined over time.

One approach is to assume these curves as linear or perhaps a low order poly-
nomial, alternatively change point regression models or piecewise linear splines
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might be used. In this article we will describe a method which improves on these
simple techniques, in particular the method we suggest is a hybrid of regression
splines and penalized likelihood techniques.

The motivating data set for this paper is a double-blind randomized treatment-
placebo clinical trial which is part of the ACTGO16 trial conducted during 1987—
1988 (Bass et al., 1992). Sixty one HIV positive patients, with 34 receiving the
drug AZT and 27 receiving placebo, were followed from 6 to 18 months. The
values of a serum marker Neopterin were measured before treatment and over the
follow up period. Neopterin is known to immediately increase as a result of HIV
infection, to progressively increase after infection and furthermore high values are
associated with a greater risk of developing AIDS. The outcome variable is log-
ratio Neopterin, which is defined as the difference between the log-Neopterin values
of each subject and the mean of all the pretreatment log-Neopterin values of the
same subject. The reason we use log-ratio Neopterin, rather than,the log Neopterin
values, is because there is an immediate and abrupt change in Neopterin when AZT
treatment begins. This change is not well modelled by a smooth curve, however,
by analyzing log-ratio Neopterin we eliminate this problem, The scatter-plot of the
log-ratio data is in Figure 1. In this paper, we will use flexible parametric curves
to describe the development of the outcome variable.

Various methods for smoothing a curve in the independent observation case can
be found in the statistical literature, for example kernel smoothing (e.g. Silverman
1984, and Speckman 1988) and splines (e.g. Craven and Wahba 1979, and Silver-
man 1985). An extensive discussion of smoothing techniques for uncorrelated ob-
servations can be found in many articles and books (e.g. Hastie and Tibshirani
1990). ,

Many spline methods are the solution of a penalized least squares criterion. The
magnitude of the penalty determines the smoothness of the fitted curves and is
controlled by a smoothing parameter. A popular way for automatic selection of the
smoothing parameter is a generalized cross-validation (GCV) method (Craven and
Wahba, 1979),

One approach for estimating an approximation to an unknown curve is to use
parametric regression splines with a small number of knots, and to regard the
number and location of the knots as smoothing parameters to be chosen from the
data (Friedman and Silverman 1989, Agarwal and Studden 1980). A related general
approach is to use regression splines with a large number of knots at fixed positions,
with penalty function techniques used to prevent the estimates from rapidly fluc-
tuating. Other authors (Gray, 1992, Hastie and Tibshirani 1990) have used this
method with between 8 and 20 knots. Hastie and Tibshirani (1990} refer to this
method as generalized ridge regression and pseudo additive models, and they find
that the results are typicaily indistinguishable from other spline solutions. Parker
and Rice (1985) also have advocated this hybrid approach of a least squares spline
with a penalty term, they found this modification to be very satisfactory and suggest
that it is permissible to use evenly spaced knots because it considerably simplifies
the programming. In this article because of its ease of implementation we follow
this hybrid approach of specifying a fixed number of knots and using a penalty
function to control the variability.
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Figure 1 Log-Neopterin ratio-lo-baseline versus time from randomization. *+": placebo; “0”: AZT
treated. :

Application of flexibie curve fitting techniques to longitudinal repeated measures
data is less common. Various authors (Bass et al. 1992, DeGruttola and Tu 1992)
have used piecewise linear splines with a low number of knots, with appropriate
covariance structures, to model the mean function in longitudinal studies. Muller
(1988) discussed kernel based and other smoothing techniques but without incor-
porating the serial correlation structure. Hart and Wehrly (1986) and Rice and
Silverman (1991) assumed a common set of design points for all subjects. Using
kernel smoothing, Hart and Wehrly (1986) suggested choosing the bandwidth,
which is similar to the smoothing parameter in spline smoothing, by minimizing
an estimated mean average squared error curve. Rice and Silverman (1991) chose
the smoothing parameter in their spline smoothing model based on a leave-out-
one-subject cross-validation method. Zeger and Diggle (1994) applied this leave-
out-one-subject cross-validation method to their bandwidth selection for kernel
smoothing. Instead of simplifying the cross-validation score itself, they suggested
a statistic which is the estimate of the expectation of the score. Their method was
applied to model the CD4 counts in HIV seroconverters in an AIDS study. All
three of these papers consider only one group.

In a recent paper, Wypij, Pugh and Ware (1993) model a longitudinal data set
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using B-splines with K knots (K was chosen as 10 in their study). Because of the
very large sample size in their data set, this spline approach produces smooth curves
without the need for a penalty function.

In this article, under a general parametric structure for the w:thm—sub_]ect cor-
relations, we use piecewise cubic polynomials with smoothing by means of a pe-
nalized likelihood to estimate the curves. Thus our approach can be viewed as an
improvement over using piecewise linear splines as the bias will be reduced because
of the larger number of knots and in addition the curves will be smoother.

In section 2 we introduce the model with statistical assumptions, define the
penalized likelihood function with a smoothing parameter, and present the asymp-
totic theory for the maximum likelihood estimates (MLE) and the maximum pe-
nalized likelihood estimates (MPLE). In section 3 we develop a leave-out-one-
subject weighted cross-validation method and various approximations to it to
choose the smoothing parameter. Section 4 gives the results of a simulation study
and the analysis of the AIDS data, and Section 5 contains a brief discussion.

2. A MULTIVARIATE LINEAR MODEL

We assume M subjects from G groups, with »; observations for the ith subject. We
are thinking of appiications in which n, is in the range 6 to 10 but could be higher
or lower. The total number of observations is n = Zn,

Suppose that the ith sub]ect is from group g. The model we assume for the
outcome observed at time ¢; is

yr‘:ﬁ (t)+emj j=1»---’n,‘, izl,---,M, (2,1)

where p. (1) are the curves which describe the development of the outcome variable
over time for group g. The random terms, e,, are a zero mean Gaussian process,
independent between subjects, but not independent within subjects. The range of
f;is0t0 T,

2.1 Piecewise Cubic Polynomials

We use piecewise cubic polynomials for w () (Hastie and Tibshirani 1990, page
22-27), which can be described as follows. Choose K — 1 time points between 0
amd7,0=T,<T, <..<T,=T(wewill referto T, T}, . . ., T as knots). Let
A =IT, T, ] be k“1 time interval. Let (1) be a cubic polynomial in A, continuous
up to second derivatives at T, ..., Tx_,. Then u(#) can be written as

K+2
() = g, + gt + a tt + ;:24 a,(t — T, 22

i

(e,

where a, is a (K + 3)-vector of unknown regression parameters, Furthermore, let
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a’ = (af, ..., al), and K1) = (Oixig-nix+3) F T(®) Oyseogynce ) then we can write
the curves in a linear regression form: pe(t) = f(a, = hl(Ha.

Notice that we use these piecewise cubic polynomial forms of i,(f) to approx-
imate the ‘true’ 4, (f) which are arbitrary unknown functions. Piecewise cubic poly-
nomials, also called regression splines, form a large class of smooth functions,
although they cerainly do not include all functions M (0). It is hard to imagine a
real application in which piecewise cubic polynomials with a large number of knots
do not provide a sufficiently good approximation to i, (5). Unless the number of
knots X + 1 is small, we use a penalized likelihood method to smooth the curves
#,(?) since the maximum likelihood estimate will be too variable. Thus, similar to
the approach of Gray (1992) and Parker and Rice (1985), our strategy is to use a
large number of knots to reduce bias and a penalty function to reduce variability.
In the rest of the article, unless otherwise stated, we will assume that the “true”
curves in our study are piecewise cubic polynomials, that is, they can be written
in the form (2.2) with X fixed. The bias associated with approximating the “true”
curves by piecewise cubic polynomials with typically be small, unless there are
very few knots, and particularly in comparison to the uncertainty in the estimates.

The piecewise cubic polynomial we use is an approximation to the non-para-
metric smoothing spline used in Craven and Wahba (1979) and Silverman (1985).
The difference between a piecewise cubic polynomial and a smoothing spline is in
the number of knots. The non-parametric smoothing spline, which is a solution to
a specific optimization problem, uses each design point as a knot, whereas our
hybrid approach uses a relatively large (between 8 and 20) but fixed number of
knots. If we consider a simple cubic polynomial in which there are fio knots as
one extreme case, and the non-parametric smoothing spline as the other extreme,
then our piecewise polynomial is intermediate of these two extremes.

This approach, although lacking the aesthetic mathematical appeal of non-
parametric smoothing splines is certainly a practical and flexible method for mod-
elling longitudinal data. Furthermore if an appropriate penalty term is subtracted
from the log-likelihood in the estimation procedure then the resulting estimated
curves are smooth,

An appealing feature of using a piecewise cubic polynomial is that the model is
simple to fit, and its statistical properties are relatively easy to derive. Piecewise
smoothing transfers the problem of estimating curves to that of estimating a finite
number of unknown regression parameters. We can use the theory developed for
standard linear models and ridge regression since the model can be written in a
linear form,

2.2 Log-likelihood and Penalized Log-likelihood Function

The following notation are needed, ¥; = (y,, ..., ¥, ) a” = (o, ..., af), X,
= (h(r,), ..., h(z,,))7, then EY, = (u (), ..., p(t,)) = X Also denote S, =
Cov(y, ¥). :

Our model is ¥; ~ N(X,a, 2), where {Y,, Y,, ..., ¥,,} are independent.

The covariance structure X, is assumed to have a parametric form Z(¢), which
is left general in our development, but in practice could be determined by a random-

-
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effects structure (Laird and Ware, 1982), or other more general structures derived
from stochastic processes (Diggle, 1988).

The log-likelihood for the above model is

. M M
L(a, ¢) = const — % > loglz| - % > RTST'R.. 2.3)
i=1 i=1

where R, = ¥, — X

Each curve in our model has K + 3 parameters. For large X this will lead to
overparametization and hence instability of the estimates. One way to deal with
this problem is to add a penalty term to the usual likelihood function, thus forcing
additional smoothness onto the estimated curves.

The penalized log-likelihood L, is defined by subtracting a penalty term from
L(e, ¢). The commonly used penalty term (Wahba 1990) can be written as:

Penalty term

G T
” 2
"";. L (@) ar

G T
An 2. fo o f*OLF" D), dt

G
- T - T
= An RZ] ajwa, = Ana Do

where w = [§ f7()] f"(®)]7 dt is a known matrix, and 0 = diag(w, @, . . . , ®)guee

Notice that if the curve for every group is a straight line then the Penalty term =
0

The penalized log-likelihood function L (a, ¢; A) is defined as:
L, ¢ A) = L, ¢) — Ane’Qa. (2.4)

Here A is the smoothing parameter which controls the degree of smoothness of the
estimate of u,(f) and can be chosen by the cross-validation scheme discussed in
section 3.

One interpretation of L, is that it is the log of the product of the likelihood and
a prior for a, and hence the estimate which maximizes L, can be interpreted as a
posterior mode.

2.3 Estimates and Their Statistical Properties

In the rest of the article, we use (&, @), (a¥, ¢¥) to indicate the MLE and MPLE
for (e, ¢) respectively, and denote
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1 M
B = lim p > XT3,
n—== R

We can write the MLE of « as'

& = (f X!ﬁr‘X,-)— ( X.-’ir‘Y,),
=1

i=1

and the MPLE of « as

M LR
af = (; XTZFX, + 2)\nﬂ) (; X,TE,’-’"IY})

where 2, and =¥ are the abbreviations for £,(¢) and Z(¢*). Notice that the MPLE
af has a ‘ridge’ like form.

The asymptotic properties for MLE and MPLE Under certain regularity conditions
including A, — 0, and when M (=total number of subjects} — %« (which implies,
n — «), we have the following

Property (i) V(& = @) = N(O, B™)

Property (ii) Va(B-'(B + 2A,Q)ak — a) — N(O, B~
Property (iii) Va(B™'(B + 2A,0at — &) — 0 Pr.
Property (iv) \/E(qb,l” - q?:-) —Q Pr

Property (v) the asymptotic distributions of a} and ¢% are independent

The proof and the regularity conditions can be found in the first author’s dis-
sertation (Wang, 1991). The necessary regularity conditions are analogous to those
required to prove the consistency and asymptotic normality of maximum likelihood
estimates.

Property (i) is the well known result. for an MLE, properties (ii)—(v) are specific
results for the MPLE,

Under the condition A, — 0, Property (iv) indicates that the difference between
the MLE and the MPLE of ¢ is o,(n"'"?). The difference between the MLE and
the MPLE of «, on the other hand, is not o,(n~''?) when n'/?A, does not go to
zero as n — o, If A, approaches zero faster than n~'/2, then the MPLE and the
MLE of a are asymptotically the same. This is as expected because for practical
purposes when A, is very small, the difference between the Penalized log-likelihood

and the Log-likelihood is ignorable.
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3. CHOOSING A SMOOTHING PARAMETER A BY CROSS-VALIDATION

3.1 Review of CV Methods for Uncorrelated Observations

Inthe case y, = wit) + 5, (i =1,2, ..., n) where g, are uncorrelated random
variables with equal variance, there is a large statistical literature on various meth-
ods to find a smooth curve as the estimate of s(H). These methods include non-
parametric splines, kernel smoothing, or piecewise polynomial splines, Despite the
differences between these approaches, choosing a smoothing parameter is always
a key issue in the topic. Craven and Wahba’s (1979) GCV method, which was
originally used for their nonparametric spline and later also for kernel smoothing,
is a commonly used criterion for choosing smoothing parameters.

The penalized least square estimate of wu(f) is the minimizer of

. 1 n T
min = > (u(t) = v + A | () du
~ R i=1 0
The definition of the CV score is
l < .
v =~ 2. (i = Rplt)? 3.1

where f,(f) is the penalized least square estimate of u(f) when the i observation
is omitted.

Let (&), flty), ...y REDT = AX) (30 Y20 ..., ¥,)7 be the penalized least
square estimate of (u(t)), u(t,), ..., u(t,))’, and a, be the ™ diagonal elements of
A(A). Craven and Wahba (1979) showed that

_ 1 oy — )
YD = A TR G2

Thus, the CV score can be calculated without fitting » separate models each with
one observation omitted.

GCV was obtained from (3.2} by replacing each a,; by its mean, which equals
(1/n)Trace(A(A)): that is

"

+ 3 U - )P

1 i=1

GCV(A) = ] 3
[l - trace(A()L))]

{3.3)
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3.2 Leave-Our-One-Subject Cross-Validation and Generalized Cross-Validation
Jor Correlated Observations

In the situation we are considering the individual observation are correlated but Y,
are independent random vectors. For this case Rice and Silverman (1991) suggest
the idea of leave-out-one-subject cross-validation to choose the value of the
smoothing parameter for their spline smoothing model. They assume the observa-
tions are equally spaced in time and balanced across the subjects. They calculate
the CV score using the assumption that the data are balanced. Zeger and Diggle
(1994) apply leave-out-one-subject cross-validation to choose a bandwidth in their
kernel smoothing technique in the unbalanced data case. Because of the different
data structure and smoothing technique, neither of the above methods can be di-
rectly applied to our unbalanced data and piecewise cubic polynomial model. In
what follows, using the idea of leave-out-one-subject, we will develop an equality
analogous to (3.2). We define a family of weighted CV criteria rather than the
unweighted CV discussed by Rice and Silverman, and Zeger and Diggle, and derive
an easily programmed approximation to CV for a specific weight.

Our model is, ¥, = X, + R, where {R, R,, ..., R,,} are independent with
mean zero and variance-covariance matrix Z,(¢).

There are three types of estimates of ¢, in our procedure, they are the MLE, the
MPLE and the MPLE when one subject is omitted. In developing the cross-vali-
dation criterion, we will assume that the difference between the three estimates of
¢ can be ignored when we want to smooth the curves (). We use the same
notation £, to denote the estimate of =, in all these cases. Ignoring-the difference
can be justified because of the orthogonality between the estimates of ¢ and o and
because of the Property (iv).

The three estimates of « are denoted by: & for the MLE, o« for the MPLE, and
ok, for the MPLE when the #* subject is left out.

A weighted cross-validation criterion is defined as

M
WCVN) = 1 3 (¥, = Xt "W, )Y, - Xt G4

where W{¢) is some positive definite matrix depending on unknown parameters
¢. We also denote W, = W,(¢). In practice, one could use W, = =, or W, = I. The
choice W, = Z, is attractive because then the covariance structure of the observa-
tions is explicitly used in estimating A.

It is impractical to calculate WCV(A) by fitting M models, one for each time a
subject is left out. Instead we construct a different expression for WCV which only
requires the model to be fit once.

The following notation is needed for convenience.:

Mz
o
t

Y, =377y, X=%12%, C, = . + 2AnQ).

k
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Lemma | X(C, — XIX)' = (I, — RCENXC;.
The proof requires simple matrix algebra.

Lemma 2 ¥, - Xaf, = (I, — XC XD (T, - Rad).

Proof. Since we are ignoring the difference between the estimates of =, in the
cases of the MLE, the MPLE and the MPLE when one subject is left out, then
from section 2.3, of = C7' TM, XIY, and o, = (€, - XIX)™' (=¥, XTP, -
X;f Y, i

Thus,
Y, - Xja,’{‘(i)

~ . A s —~ M o~ o~ £ ~

=Y, - X(C, - XTX)""' (2 XY, - XarYr)

k=1

o~ ~oA ~ ~ A M s ~ o~ —

=¥ -, - X XN X G (2 Xy, - X,TY,.) {from Lemma 1)

k=1

M
(Im + (Iu,' - XfC;Im_IXiéIIXDPf - (In,- - X,-C'I’X-’)“IX,-C“‘ 2 }?kr?k
k=1

=, - XC, XD, - A, — XC;' XD 'Rt
= (In; - XiéxlmWI(?i - X~ia’Ak)'

Directly from Lemma 2, we have the following theorem for calculating WCV(A):

THEOREM 1

WOV =+ 3 (7, - Rad,, - XCriRD)

(3.5)
i}f!W;-li}fE (In, - XiCIlX;r)MI(?i - X",-EIT).
Note that when W, = Z, we can write the WCV as,
14 - 5 A O D O
WOV = = 3 (7, - Rap), - RCTRDTHE, - Rab). (3.6)
i=1

Calculationn of WCV(A)

Equation (3.6) {or (3.5)) allows us to calculate WCV(A) for each A by fitting the
model once. But to find the best A, that is, the minimizer of WCV(A), it is necessary
to calculate the MPLE for many A’s. In what follows, we give a further approximate
formula which allows us to approximate WCV(A) for all A by only fitting the model
without penalty.

The results in the Property (iii) suggest that the difference between of and
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(B + 200)"'Bé is o(n”''?). Also, B + 2A0 can be estimated by 1/n C, and B can
be estimated by 1/n C,, thus af in (3.6) can be replaced by ¢;'¢ 4 Now the
approximate WCV criteria becomes

M
AWCV(A) = i. > (7= XCE@Td, ~ RET AN, - XETE®. BT

i=1

All the quantities in equation (3.7) can be obtained just from the MLE, and so
the calculation of AWCV for all A requires only one fit of the model. Thus choosing
A by minimizing AWCV(A) is computational feasible.

Using W; = Z,, a Generalized cross-validation criterion, analogous to (3.3) can
also be defined as

AWGCV(X)
M ‘ 2
(¥, - Yfai‘)’"(f’,- - X',-a’f)/(l - ;lt-trace (2, YECIIXJT))
=1

=1
n.

1

M 2
> (7 - RCE Y, - RC) 0&)/(1 - %trace (c;lq,)) . (3.8)
=1

-

The formula for calculating AWGCV (3.8) is slightly simpler than that of AWCV
(3.7), however the difference in computational time is insignificant compared to
the time spent on the model fitting, We observed in our simufation that the differ-
ence between the choice of A based on AWCV and AWGCYV is very small, thus in
this paper we focus on AWCYV.

Rice and Silverman (1991) and Zeger and Diggle (1994) indicated that the ex-
pectation of their unweighted CV approximates the sum of two terms, the variance
of the outcome variable and the MSE, where the mean square error is of the
estimated curves to the “‘true” curves, Since the variance of the outcome is a
constant, this argument leads to an interpretation of CV: to minimize the CV is, in
an expectation sense, to minimize the MSE. The same interpretation can be mod-
ified to the weighted CV score defined in this paper.

4. SIMULATION STUDY AND AIDS APPLICATION

4.1 Data Generation Scheme

The generated data sets are designed to mimic the changes of a serological marker,
Neopterin, to a drug in an AIDS clinical trial (Bass er al., 1992). We design our
data sets to have the following features: (1) each data set has a placebo group and
a treatment group, and each group contains 30 subjects; (2) all subjects are followed
from one time unit before treatment began until 5 time units after treatment began;
(3) each subject has one pre-treatment measurement uniformty distributed over the
one unit interval, and 4-8 post-treatment measurements with a tendency for more
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observations to be made at earlier times, that is, closer to the treatment initiation
date.

The response Yy (J=1 .. ,n,i=1,..., M} for person i at time 1, is created
as follows. '

Yy = {0 + efty)
where the ‘true’ curves e, (7) are

#(8) = 15 + log(zr + 1), (The ‘placebo group’}
() = 15 + log(r + 1) — [1 — cos{m(t — 1)/t > 1).

(The ‘treatment group’) 4.1
Let R, = (e, ... , e,..,;i)r. The (j, k)* element of =, the variance-covariance
matrix is o?[I(j = k) + y?p ¥ ). We present the results for o2 = 0.25, * = 1

and p = 0.9, other choices of these parameters gave very similar results. As is
frequently assumed in longitudinal studies, the ‘true’ model separates the random
term e, into two components: an independent measurement error term with mean
zero and variance 0.25 and a random term with an AR(1) correlated structure.

One hundred data sets are generated. The scatter-plots of a specific randomly
chosen data set and “true” curves (4.1) are shown in Figure 2.

19

13 1

| [ |
3
Time Units

O]
-
Ut—
o

Figure 2 Scatter plot of one simulated data set and the “true” curves, The **+": placebo; the “o”:
treated; the upper curve: w,(t); the lower curve: w,(r).
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4.2 Model Fitting Procedures

We use the Fisher-scoring algorithm (Chi and Reinsel 1989) to obtain the MLE
and MPLE. This algorithm is an iterative procedure which calculates new paratneter
values a*", $Y*1 from current values o', ¢/ using

=1 ()]

8L 9L oL

Ay _ e 1)) _ E dada E adoaT Y
¢ ¢ &L E 8*L oL
dadd’ dpap” a¢

Since E{0°L/dad¢”) = 0, we have in the log-likelihood (A = Q) case,

G}

M -1 M
ot it = (2 Xrs X,.) (E XT3 Y,.) (4.2)
i=| i=1

‘ . : . L 17 faL]Y
LD = D e AL () = =
and ¢ & A, where Ag [E ad)acﬁ’"} [a¢]

For the penalized log-likelihood (A > 0) case, the only difference is that (4.2) is
replaced by

A

M =1 [¥2]
ot = (2 XTI X, + Z)mQ) (2 Xrzo Y,)

i=| i=1

SAS PROC IML was used for all computations.

The models to be fitted are assumed to have 13 knots which are chosen at spaces
of half a time unit for the entire 6 time units period. For the covariance structure,
we assumed that the (j, k)™ element of 2, is o[I(j = k) + y*p "], where o2,
¥* and p are the unknown parameters. '

For each of the 100 data sets, we obtain the maximum likelihood estimates, then
calculate Ay, by minimizing AWCV (equation (3.7), and then using the A, values,
we obtain the MPLE.

The Monte Carlo bias and variability of the estimates of u(7) at specific time
points are evaluated. An overall measure of the difference between the fitted curves
and the true curves is calculated for each data set. This squared Integral Error is
defined as SIE = 27 _, Ig (i (1) — ,u,g(t))2 di, where ji(f) is the fitted curve.

In our calculation for SIE, instead of using u(f) as defined in (4.1), we used a
very close approximation to u,(f) which has a piecewise cubic polynomial form
(2.2). The maximum difference of the t,(#} and this approximation is less than
(.01. Because of the variability of the observations, the difference between the true
() and the approximate p(f) is negligible compared to the difference between
M (1) and i (0).
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4.3 Results of the Simulation

4.3.1 Nlustration of the Results for One Data Set For one of the generated data
sets, Figure 3(a)-(d) show the fitted curves for A = 0, 0.0001, Ao {=0.0094), and
0.1. In Figure 3(a) the estimated MLE curves show too much fluctuation around
the “true” curves. In Figure 3(b) the estimated curves are under-smoothed because
A is too small. Figure 3(c) is the MPLE, when A is chosen by Cross-validation. In
Figure 3(d) the curves are the MPLE when A is too big, notice that the curves are
over-smoothed. The values of SIE corresponding to the 4 figures are (a) 1.749, (b)
0.223, (c) 0.143 and (d) 0.343 and the minimum value of SIE is 0.133 at A =
0.004. The closeness of the two SIE values at A = A, and A = 0.004 indicates
that for this data set our approximate AWCYV criteria gives rise to estimated curves
which are almost optimal with respect to the SIE criteria.

4.3.2 Comparison of MPLE and MLE The MPLE always give smoother curves
than the MLE since smoothing penalties are applied to the former. In what follows,
we compare the MPLE and the MLE in two ways 1) pointwise and 2) overall.

s i ! Time:tlntts 1

(b). MPLE using A=0.0001

g { : T;llssunita 1 : ¢ s { : Tiln{.lnits ! : ¢

(). MPLE using Ao,=0.0094 (d). MPLE using A=0.1

Figure 3 Fitted curves using different values of A. The solid upper curves: the fitted curves of placebo;
the solid lower curves: the fitted curves of treated; the dashed upper curves: the “true” curves of placebo;
the dashed lower curves: the “‘true” curves of treated.
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1). Three time points, + = 0.25, 3, 5.75 are chosen for the pointwise evaluations.

Note that ¢ = 3 is in the middle of the entire 6 time units range and is located
on a knot while + = 0.25 and 5.75 are closer to the end points and are not
located on knots,
The box-plots of the values of the 100 fitted MLE and MPLE curves are
presented in Figure 4(a), (b) and (c) for placebo and treatment group at ¢ =
0.25, 3 and 5.75 respectively. It is easy to see that the 100 MLE values have
larger variation than the 100 MPLE with A = A, One point to note is that
at some times, especially at r = 5.75 for the treatment group, the MLE is
less biased than the MPLE.

2). The SIE is calculated as an index of the overall goodness of fit. The ratios
of the SIE of the MPLE curves to the MLE curves are computed for all the
100 data sets. The percentiles of this ratio for the 100 data sets are: 0.03
(minimum), 0.08 (25th), 0.31 (median), 0.63 (75th) and 0.69 (maximum)
respectlvely These results show that although the MPLE is slightly biased
it gives a substantial better overall fit to the whole curve than the MLE.

4.4 Clinical Trial Data

The method described above was applied to the Neopterin data given in Section 1.
The covariance structure of the observations is given by a continuous time version
of an AR(1) process, that is, Coviey, e,) = o?[l(j = k) + (v, + Y (v +
o) where o2, v, ¥, and p are the unknown parameters. Knots are
chosen at 4 weeks mtervals from ¢ = 0 to week 56, that is, 15 knots total. To
ensure that the curves pass through the origin, the intercept term is removed from
the piecewise cubic polynomials forms we assumed for the curves, The fitted curves
are shown in Figure 5. The curves indicate that there is an almost immediate
reduction in Neopterin due to AZT, however there appears to be no further reduc-
tion beyond about 8 weeks,

5. DISCUSSION

One important issue in the analysis of longitudinal data is the choice of the within-
subject correlation structure. Besides the AR(1) covariance structure in the numer-
ical examples above, we also considered a covariance structure derived from a
random-effects model (Laird and Ware, 1982). For the simulated data sets, we
observed that the choice of A, and the estimated curves were very similar irre-
spective of which of these two covariance structures was assumed in fitting the
model. We believe, that with respect to smoothing the mean function, that reason-
able choices for the within-subject covariance structure w111 not change the smooth-
ing procedure 51gn1ﬁcantly

Another point to note is that fixed or time varying covariates could easily be
incorporated as linear terms in the model.

This approach has some open questions, such as how many knots to use, how
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Figure 4 Box plots for the fitted values minus the *‘true” values. In each of (a), (b), and (c), the boxes
from left to right: MLE for placebo; MPLE for placebo; MLE for treated; MPLE for treated.

to choose the position of the knots, whether the knots should be equally spaced,
and whether the position and number of knots should depend in any way on the
data. These questions may not have simple answers. Others (Gray 1992, Hastie and
Tibshirani 1990) have suggested using between 8 and 20 knots, either equally
spaced (Parker and Rice 1985) or with a roughly equal number of data points
between each knots (Gray 1992). Our experience is that the exact number and
position of the knots is not crucial provided the number is not small and a penalized
likelihood approach is used.

Our approach can be extended in a number of ways. For example, a different
smoothing parameter could be used for each group; an approximation similar to
(3.7) would make this computationally feasible. Modifications to the model to re-
duce the endpoint effects common in smoothing problems are possible. One ap-
proach would be to assume that t, (1) is linear, rather than cubic, between 7, and
T, and between Ty, and T.

In principle, statistical inference including hypothesis testing and confidence in-
tervals for the parameters can be performed using the asymptotic distributions of
MPLE in Section 2.3. One alternative for constructing confidence intervals for «
is to use the Bayesian interpretation (Silverman 1985) of the penalized likelihood
tunction. Our simulation work with confidence intervals suggests that the empirical
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Figure 5 The MPLE of the Log-Neopterin ratio-to-baseiine using A., = 0.36. The upper curve: pla-
cebo; the lower curve: AZT treated.

coverage rates of intervals derived using the Bayesian interpretation are slightly
better than these constructed from the asymptotic properties in Section 2.3, and
furthermore that the coverage rates are acceptably close to the nominal rate. Further -«
description of this is given elsewhere (Wang and Taylor 1994).
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