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Latent curve models provide a flexible approach to the analysis
of longitudinal developmental data. Under a latent curve
model, an individual’s response may be considered a function
of time as an aid to understanding the development of a given
behavior, or how specific features of change in a behavior may
be related to covariates. When the development of a behavior
follows a linear course, for instance, a model may be defined
by one feature that captures the response level at a particular
point in time and a second that relates to a linear change rate.
More generally, responses across individuals are assumed to be
dependent on a common form of change, such as one that is
linear, but individuals may vary in their dependence on this
common form (Meredith & Tisak, 1984, 1990). This quality
of the model allows individuals to differ in their developmental
trajectories. For instance, curves may vary in their response
level and change rates. Depending on the statistical software
used to estimate the model, individuals may be measured at
unique time points, such as when individuals are different ages
at each wave of measurement and the behavior is to be studied
as a function of age rather than arbitrary times of measure-
ment (Blozis & Cudeck, 1999; Mehta & West, 2000). Missing
data may also be handled (see Schafer & Graham, 2002, for a
review concerning missing data techniques for linear structural
equation models).

Perhaps the most common application of a latent curve
model is one based on a polynomial function, such as a linear
or quadratic function, or a spline function linking two or more
polynomial functions (see, e.g., Raudenbush & Bryk, 2002,
Chapter 6). Polynomial functions, however, are not always well
suited to capturing all forms of nonlinear change. Reading
ability in children, for example, often changes at a nonlinear
rate with a tendency for performance to stabilize at older ages
(Francis, Shaywitz, Stuebing, Shaywitz, & Fletcher, 1996). An
application of a quadratic function to such data might do well
in capturing the increase in ability during childhood but would
then imply that ability decreases thereafter. Thus, not only

might a quadratic function provide a poor fit to these measures,
characteristics of the function would not match theoretical
considerations. A special case of a latent curve model that
allows for nonlinear change in longitudinal responses is a latent
basis curve model (McArdle, 1988; Meredith & Tisak, 1990).
In this model, the shape of the common response form is
unknown and estimated using sample data. Although some
missing data may be handled, a latent basis curve model gener-
ally requires individuals be measured according to the same
data collection scheme, such as when individuals are the same
ages at each occasion. Practically speaking, many develop-
mental investigations rely on data that are collected when indi-
viduals are different ages at each occasion or that have unequal
intervals between assessments. Thus, the applicability of the
latent basis curve model would be limited in this domain as
ignoring such details of the pattern of data collection may
obscure true trends in the behavioral course.

In Meredith and Tisak’s (1984, 1990) formulation of the
latent curve model, the function that characterizes a longitu-
dinal response at the individual level may be a nonlinear
function, such as an exponential function. There is no restric-
tion on the chosen function with the exception that any non-
linear parameter must be fixed across individuals. Other
parameters may vary between individuals. For example, for a
response that is described by a power function, such as β0

β1,
where β0 denotes the response level when time is equal to 0
and β1 is the nonlinear change rate, individuals may differ with
regard to the fixed response level given by β0 but not the
nonlinear change rate, β1. Still, the model represents a very
flexible approach in that many different functions may be used
to describe individual trajectories. Blozis and Cudeck (1999)
proposed a related model referred to as a conditionally linear
mixed-effects model that also requires that nonlinear
parameters are fixed across individuals. Unlike the latent curve
model proposed by Meredith and Tisak, which allows for some
missing data and multiple patterns of observation, such as
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those due to observing multiple cohorts, a conditionally linear
mixed-effects model allows individuals to be observed at
completely unique time points, such as for cases when indi-
viduals are different ages at each measurement occasion or the
intervals between assessments differ among individuals. The
model proposed by Blozis and Cudeck also included a factor
analysis model for a separate set of covariates that do not vary
across time but together serve as indicators of a latent variable,
such as self-esteem, which may be related to the characteristics
defining change in the individual-level response.

In a latent curve model based on a polynomial function, a
set of basis curves common to all is based on fixed and often
known values. For example, when change in a behavior is
linear, the first basis curve corresponds to the response level
and so is set equal to unity.The second basis curve corresponds
to change in the response and so is often equal to the times of
measurement. An individual’s response is then assumed to be
a linear combination of the basis curves and a set of weights
specific to the individual. The weights, representing specific
change characteristics, allow individuals to vary in their
response trajectories, such as having unique response levels
and linear change rates. In a nonlinear latent curve model, the
basis curves may be nonlinear functions of time. Similar to a
model based on a polynomial, an individual’s response is
assumed to be a weighted linear combination of a set of
common basis curves and a set of weights unique to the indi-
vidual. The weights, again, represent specific features of
change and so allow for individual differences in the response
trajectories.

Browne (1993; also see Browne & Du Toit, 1999) proposed
a structured latent curve model that, unlike the nonlinear
latent curve described above, allows individuals to differ with
regard to nonlinear parameters, such as allowing individuals to
vary in terms of a nonlinear change rate. Missing data and
unique data collection patterns across individuals are also
possible (Blozis, 2004). The structured curve model is limited,
however, with regard to the kind of functions that may be spec-
ified. For example, Browne (1993) describes three nonlinear
functions, an exponential, logistic and Gompertz function,
that may be specified under this framework. Individual-level
responses are assumed to depend on features of a common
curve but may do so at varying levels. Although both the latent
curve model and the structured latent curve model allow for
nonlinear patterns of change in a longitudinal response, the
two models differ in that under a latent curve model all indi-
vidual-level trajectories are assumed to follow the same form
of change, whereas under a structured latent curve model only
the mean response is assumed to follow a particular function.

A natural extension of a latent curve model is one that
considers multiple longitudinal responses simultaneously. For
example, a longitudinal response may be studied along with
other measures treated as time-varying covariates. That is,
change in a response, adjusted for the effects of one or more
other measures that have also been measured over time, may
be useful in characterizing change in a variable after account-
ing for variation in the response that is due to other longitudi-
nal variables. Alternatively, a set of longitudinal responses
measured at each occasion may serve as indicators of a latent
measure to then be studied as a function of time. Such models,
referred to as second-order latent curve models, assume that a
latent variable accounts for the patterns of correlations among
a set of variables. The latent measure is then studied as a
function of time, similar to that done for an observed variable

in a latent curve model (Chan, 1998; Duncan & Duncan,
1996; Sayer & Cumsille, 2001).

An additional approach, and one that is considered in great
detail here, is one that considers multiple longitudinal
processes to study how characteristics of change in one
variable are related to features that describe change in another
variable. For example, in studies that utilize multiple inform-
ants, such as having a parent and teacher provide develop-
mental information about a child, longitudinal patterns may
be as assessed by multiple observers to study the degree of
correspondence (or lack thereof ) in reports between observers.
Alternatively, it may also be possible to consider regression
analyses in which the random coefficients corresponding to
one variable are regressed on those of another. Unlike the first
two methods, the times of measurement may vary both within
and between the highest sampling unit (e.g., parent and
teacher dyads). The structured latent curve model has been
considered for the simultaneous consideration of multiple
longitudinal variables, both in a model that allows for the study
of correlations between change features in one variable and
change features of another (Blozis, 2004) and in a second-
order model that considers a set of variables as indicators of a
latent variable that may then follow a nonlinear function of
time (Blozis, 2006).

This article considers nonlinear latent curve models for the
study of longitudinal developmental data. Motivated by the
simultaneous consideration of antisocial behaviors and
academic achievement measures for a sample of adolescents,
we begin by reviewing latent curve models based on polyno-
mial functions before describing nonlinear latent curve
models, including the structured latent curve model. A general
approach for the simultaneous consideration of multiple longi-
tudinal measures is then described to study how characteristics
of change in antisocial behaviors are related to change in an
indicator of academic performance.

Longitudinal study of antisocial behaviors and
academic performance

Research suggests that antisocial behaviors during childhood
and adolescence can have negative consequences for indi-
viduals and their adjustment. Thus, it is important to under-
stand factors associated with the onset and change in antisocial
behavior. Patterson, Reid, and Dishion (1992) suggest that
antisocial behavior emerges out of a developmental process
that is predicted by behavioral interactions with parents,
siblings, and peers. Early-onset antisocial behavior appears to
be particularly problematic and has been linked with diffi-
culties at home, poor academic performance, impaired social
relations, substance abuse, and other problem behaviors
(Kazdin, 1987; Moffitt, 1990; Patterson, 1982; Reid, 1993;
Simons, Whitbeck, Conger, & Conger, 1991). Current
research suggests that one of the ways that deviant peers may
have an effect is by reducing the amount of time spent on
homework and other school-related tasks, which may lead to
delayed or underdeveloped academic skills, such as reading
ability (Kazdin, 1993; Patterson et al., 1992).Thus, we see two
distinct behavior problems, antisocial behavior and reading
disability, which will likely persist without effective interven-
tion and may even exacerbate each other (Dishion &
Kavanagh, 2003; Francis et al., 1996). This research suggests
that it is important to examine the association between changes
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in reading ability (serving here as a proxy for academic achieve-
ment) and antisocial behavior to better understand their
development and potential for treatment.

We consider data from the National Longitudinal Survey of
Youth (NLSY) of Labor Market Experience in Youth
supported by the US Department of Labor for a subset of 547
children included in the first of several cohorts participating in
the study. We present measures of antisocial behavior and
reading performance for children who were between 6 and
8 years old at the first assessment (mean age was 6.9 years with
a standard deviation of 0.58) with planned assessments
approximately every other year over an 8-year period. Slightly
fewer than half of the sample (268 cases) had complete data
on both measures at each of the four occasions. Antisocial
behavior was measured by a subtest from the Behavior
Problems Index by Zill and Peterson (Baker, Keck, Mott, &
Quinlan, 1995). Scores were based on the mothers’ ratings on
six items concerning antisocial behaviors over the previous
3 months. Scores represent sums across items and have a
potential range of 0–12 points. At the first assessment, scores
ranged from 0 to 9 with a mean of 1.9. Reading performance
was measured by the Peabody Individual Achievement Test
(PIAT) Reading Recognition subtest, an 84-item test designed
to assess word recognition and pronunciation ability. Test
scores represent a sum of items correctly answered, potentially
ranging from 0 to 84. Scores were divided by 10 to reduce the
scale so that is would be more comparable with the measures
of antisocial behaviors. At the first assessment, reading scores
ranged from 0.1 to 7.2 with a mean of 2.4 (s = 0.86). Both
measures were studied as a function of the child’s age, with age
measured to the nearest month with the intervals between
assessments possibly varying both within and between
children. Following a brief review of a latent curve model for
a single measure, we then apply a multivariate version of the
model to describe the nature of change in antisocial behavior
in relation to change in reading ability.

Latent curve models

In a latent curve model, a set of responses, yi = (y1i, y2i, . . .,
yni)�, for an individual is considered across ni occasions, where
ni is the total number of times an individual is observed.
Assuming that all individual trajectories essentially follow the
same form of change, a matrix of basis functions, ΛΛi, is formu-
lated based on features of the common change form. For
example, if a response is assumed to change in a linear manner,
the first basis function will correspond to the response level and
the second to the linear change rate. The matrix is then
weighted by a set of coefficients, ηηi, that represent specific
change characteristics that vary between individuals. A latent
curve model is given by this weighted combination of the basis
functions plus a set of measurement errors specific to the indi-
vidual, εεi:

yi = ΛΛiηηi + εεi.

The matrix ΛΛi includes the subscript i to indicate that the
matrix may vary between individuals in terms of its elements.
For example, individuals may be measured a different number
of times or according to different times of measurement.

The error of the model, given by εεi, represents the discrep-
ancy between an individual’s observed score and that based on
the fitted trajectory. Assuming that a particular function of

time accounts for the patterns in the data, the error remain-
ing, assumed to be normal, is also assumed to be independent
with constant variance across time. In other cases, it may be
reasonable to allow the errors to covary, such as by allowing
some form of autocorrelation (Meredith & Tisak, 1990).
Between individuals, the random weights in ηηi are assumed to
be independent and normally distributed with means, denoted
here as αα = (α1, . . ., αk)� that represent the fixed-effects for
the population, such as the population level and change rate,
and a variance–covariance matrix Ψ. Although not required,
the number of random weights is often equal to the number
of fixed effects.The two are unequal, for example, when a fixed
effect does not have a corresponding random coefficient, such
as when individuals vary in terms of the response level but not
the rate of change. The variance–covariance matrix of the
random weights provides information about the extent to
which individuals vary in the change characteristics and the
patterns of the covariances between them. Assuming the time-
specific errors and the random weights are independent, the
response is assumed to have a mean and covariance structure

µi = ΛΛiαα

and

ΣΣi = ΛΛiΨΨΛΛ�i + ΘΘi,

respectively.

Common formulations of a latent curve model: Linear
and quadratic growth

A common form of the latent curve model is one based on
linear change. In considering the longitudinal measure of anti-
social behaviors, for example, a linear growth model with a
random intercept and slope at the individual level, with the
response considered as a function of the child’s age, Agei, may
be specified as

yti = η0i + η1iAgeti + εti, (1)

where, for individual i, η0i represents the expected response
when Ageti = 0, η1i represents the expected annual change rate
for the individual, and Ageti is the individual’s age at time t.
The individual-level coefficients, η0i and η1i, are assumed to
be the sums of fixed and random effects: η0i = α0 + b0i and
η1i = α1 + b1i, respectively. The coefficients α0 and α1 denote
the population response level when Aget = 0 and the annual
change rate, respectively. The corresponding set of random
effects, b0i and b1i, represent the deviations of an individual’s
coefficients from the respective population effects. For
example, an individual whose response level at Aget = 0 is
higher than the population will have a positive value for the
random effect b0i. The set of random coefficients, η0i and η1i,
is assumed to be independent and normally distributed as

.

The variances of the random intercept, η0i, and slope, η1i, are
denoted by φ00 and φ11, respectively, and their covariance by
φ10.The variances of the random coefficients provide measures
of the extent to which individuals vary in each change feature.
The covariance between the coefficients represents the linear
relationship between the response level and the linear change
rate.
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A second form of change often considered is a quadratic
growth model that allows for nonlinear change in a response.
The model is often specified to include a linear change rate and
an acceleration rate. Assuming individuals vary with regard to
all model coefficients, a quadratic growth model may be
specified as

yti = η0i + η1iAgeti + η2iAge2
ti + εti, (2)

where, for individual i, η0i and η1i are the expected response
level and instantaneous change rate when Aget = 0, and η2i is
the acceleration rate. Between individuals, the random inter-
cept and the random linear and quadratic time effects are
assumed to be normally distributed as

.

Similar to the linear growth model, the variances of the
random coefficients, φ11, φ22, and φ33, characterize the degree
of individual differences in each change feature. The co-
variances between the coefficients represent the linear
relationships between change features. Specifically, φ21 is the
covariance between the intercept and linear time effect, and φ31

and φ32 are the covariances between the quadratic effect and
the intercept and linear time effect, respectively.

Nonlinear latent curve models

Although the most common application of the latent curve
model described in Meredith and Tisak (1990) is one that
follows a polynomial, such as a linear or quadratic, growth
model, the model also allows for a variable to change accord-
ing to a nonlinear function of time. For example, a response
at time t may be assumed to follow a power function:

yti = η1i + η2itimeγ + εti.

where the coefficients η1i and η2i include the subscript i indi-
cating that they may vary between individuals but the
coefficient γ that appears in the exponent is assumed to be fixed
across individuals. Assumptions about the errors and the
random weights are analogous to that for the latent curve
models based on polynomial functions. As described earlier,
this form of latent curve model assumes that all individual
trajectories follow the same basic form but allows individuals
to vary with regard to some of the model coefficients. In
contrast to this model, a structured latent curve model is based
on an assumption that the mean response follows a particular
function that may be nonlinear (Browne, 1993). Similar to the
latent curve model, an individual’s longitudinal responses are
assumed to be a weighted combination of a common matrix ΛΛ
and a set of random weights, ηηi, that vary between individuals,
plus measurement error.

Browne (1993), for example, describes a three-parameter
exponential function for the mean of a longitudinal response.
Assuming, for example, that mean reading performance scores
follow an exponential function of a child’s age, where age may
vary between individuals (Blozis, 2004), a model for the means
may be specified as

µt = γ1 – (γ1 – γ2)exp{–γ3Aget}, (3)

where µt is the mean response at time t, γ1 denotes the upper
asymptote and so represents the potential performance level,
γ2 denotes the response level at Aget = 0, and γ3 is the nonlin-
ear change rate. The basis functions that make up the common
matrix are also given in Browne (1993). For this exponential
function, the matrix is given by

,

where each column of the matrix corresponds to a specific
aspect of change in the response. Specifically, the first column
relates to the potential performance level, the second to the
initial performance level, and the third to the nonlinear change
rate. Then, for each individual, the columns of the matrix are
weighted by a set of coefficients that are unique to the individ-
ual. The weights represent the particular aspects of change in
the response.

Multivariate latent curve model

A latent curve model for a single longitudinal response may be
extended to handle multiple longitudinal variables (Blozis, in
press; MacCallum, Kim, Malarkey, & Kiecolt-Glaser, 1997).
In this formulation of the model, it is the relationships between
the change characteristics of different variables that are of
interest. These may be studied by the correlations between
random coefficients or by regressions in which one random
coefficient is regressed on another, such as when a random
slope is regressed on a random intercept (Stoolmiller, 1994).
Whether the response follows a polynomial or nonlinear
function for the latent curve model of Meredith and Tisak
(1990) or a structured latent curve model (Browne, 1993),
multiple longitudinal variables may be studied by simply
stacking the multivariate response set and the corresponding
model components. Considering the antisocial behaviors and
reading performance scores together, a multivariate response
set may be formed by stacking the responses as yi = (y1i,y2i)�
where y1i is the set of antisocial behavioral scores and y2i is the
set of reading performance scores. A multivariate model for the
two measures may be specified as

yi = ΛΛiηηi + εεi,

where ΛΛ1i and ΛΛki are the common matrices corresponding to
the antisocial behavior and reading performance scores,
respectively, and the coefficients ηη1i and ηη2i are the random
coefficient sets for the two measures, respectively. The corre-
sponding errors are given by εε1i and εεki, respectively.

When two or more longitudinal measures are considered
simultaneously, the measures may be related either by way of
the relationships between the time-specific errors or the
random change characteristics. Within variables, the errors
may be assumed to be independent or follow different patterns
of covariance, as described earlier when a single longitudinal
measure was considered. Between variables, the errors may
also be assumed to be independent or follow some pattern of
covariance, such as allowing the errors within occasions and
between measures to covary. The relationships between the
random change characteristics of different variables may be
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studied by examining the covariance matrix of the random
weights.

Estimation

A variety of statistical software packages, such as those used to
fit linear structural equation models (e.g., AMOS, EQS,
Mplus, and LISREL) may be used to fit linear latent curve
models. Allowance for nonlinear constraints are necessary
when considering nonlinear latent curve models of the kind
described here. Beginning with LISREL version 8.8 for
Windows, for example, such models may be fitted using the
CO commands (Jöreskog & Sörbom, 2006). Mx, a computer
software package based on matrix algebra, also allows for some
nonlinear constraints. Unlike the current version of LISREL,
Mx allows individuals to be observed according to completely
unique time points.

A multivariate latent curve model for antisocial
behaviors and reading performance

Correlations between characteristics of change in antisocial
behaviors and reading ability, each as a function of the child’s
age, were studied using a multivariate latent curve model. As
shown in Table 1, various forms of change were considered to
identify functional forms that best described each behavior
over the study period. Relating back to models given previ-
ously, linear (1), quadratic (2), and exponential (3) growth
models were considered. For all models considered, Age was
centered to 6 years by subtracting 6 from the observed ages.
Model fit was based on results from deviance tests and
comparisons using the Akaike information criterion (AIC). A
deviance test may be considered by taking the difference in
deviance values for two nested models and evaluating the
difference as a chi-square statistic with degrees of freedom
equal to the difference in the number of model parameters
(Raudenbush & Bryk, 2002). The AIC is a relative measure of
model fit that may be used for non-nested models and penal-
izes models based on the number of parameters. Given two
competing models, that which gives the smaller value is
considered preferable. Maximum likelihood estimation of the
best fitting model was carried out using Mx version 1.5 (Neale,
Boker, Xie, & Maes, 2003). For the time-specific errors, we
assumed that within variables, the errors were normally distrib-
uted and independent between occasions with constant

variance across time. Between variables, we considered a
model in which the errors within occasions and between vari-
ables covaried with constant covariance across time.

Results

Based on deviance tests and the AIC, a linear growth model
best described the antisocial behaviors and an exponential
function best described the reading performance measures (see
Table 1). For the preferred model, estimates of the fixed model
coefficients with 95% confidence intervals are given in Table
2. As shown, the antisocial behavior score at age 6 for the
population was estimated to be 1.73 with an estimated 95%
CI of (1.55, 1.92), while the population annual change rate in
scores was estimated to be 0.055 with a 95% CI of (0.021,
0.090).Thus, on average, antisocial scores increased over time,
although at a slow rate. The reading performance score at age
6 for the population was estimated to be 1.71 with a 95% CI
of (1.62, 1.79). Assuming the exponential function was appro-
priate in characterizing performance scores, the expected
potential performance level was estimated to be 8.09 with an
estimated 95% CI of (7.53, 8.83). The estimated change rate
was 0.137 with an estimated 95% CI of (0.115, 0.160),
suggesting scores increased over time but that the rate of
increase slowed as children grew older.

A deviance test may be used to assess the need for a random
coefficient in a model by comparing one model in which the
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Table 1
Indices of model fit based on a multivariate latent curve model using different forms of change

Antisocial behaviors Reading performance –2lnL p AIC

Linear Linear 8730.502 17 8764.502
Linear Quadratic 8653.362 23 8699.362
Linear Exponential 8522.559 23 8568.559
Quadratic Linear 8725.785 23 8771.785
Quadratic Quadratic 8528.694 30 8588.694
Quadratic Exponential 8519.314 30 8579.314
Exponential Linear 8724.649 23 8770.649
Exponential Quadratic 8528.048 30 8588.048
Exponential Exponential 8518.766 30 8578.766

Notes. –2lnL = deviance statistic, p = # of model parameters, AIC = Akaike Information Criterion
(smaller values are preferred).

Table 2
Maximum likelihood estimates (MLE) of fixed effects based on a
multivariate nonlinear latent curve model

Variable Parameter MLE 95% CI

Antisocial behavior Level at 6 years 1.73 (1.55, 1.92)
Linear change rate .055 (.021, .090)

Reading performance Potential level 8.09 (7.53, 8.83)
Level at 6 years 1.71 (1.62, 1.79)
Nonlinear change rate .137 (.115, .160)

Notes. 95% CI is the estimated 95% confidence interval for the
parameter. Antisocial behavior scores were assumed to follow a linear
growth model with a random intercept and slope; reading performance
scores were assumed to depend on an exponential function with
allowance for individual differences in the performance level at age 6,
the potential level, and change rate.
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variance of a given random effect is assumed to be different
from zero to a second model in which the variance is assumed
to be equal to zero (Raudenbush & Bryk, 2002). The variances
of the five random coefficients were all considered necessary
in characterizing the individual-level responses based on
deviance tests.

As correlations are often easier to interpret than covariances,
we discuss the correlations between the random coefficients
provided in Table 3. An estimated correlation of .31 suggested
a slight tendency for antisocial scores at age 6 to be associated
with the annual change rate such that higher levels of anti-
social scores at age 6 tended to correspond somewhat with
faster change rates over the study period. For reading perform-
ance scores, the nonlinear change rate was moderately related
to potential reading scores (r = –.65) and reading scores at age
6, (r = .76) indicating that lower potential reading scores
tended to be related to faster rates of change as was higher
reading levels at age 6. Potential reading performance and
performance level at age 6 were weakly correlated (r = –.22),
suggesting a slight tendency for higher performance levels at
age 6 to be related to lower potential performance levels.

Between variables, weak to moderate patterns of association
were evident. Antisocial behavioral level at age 6 was negatively
correlated with potential reading performance (r = –.31),
suggesting higher levels of antisocial behaviors at age 6 were
related to lower potential reading performance levels. Similarly,
at age 6, antisocial behavior was negatively correlated with
reading performance (r = –.52), suggesting a tendency for
higher levels of antisocial behaviors to be related to lower
performance levels at this age. Antisocial behavior at age 6 and
the potential reading performance level were negatively corre-
lated (r = –.43), suggesting a tendency for those with lower
behavioral problems at age 6 to later have higher reading
performance levels. The linear change rate in antisocial behav-
iors was negatively correlated with both reading performance
level at age 6 (r = –.12) and potential level (r = –.34), suggest-
ing a tendency for children with lower antisocial behavior to
also have higher reading performance.

Discussion

With their ability to characterize responses at both the popu-
lation and individual levels, latent curve models have become
an appealing strategy for the analysis of longitudinal develop-
mental data. A popular formulation of the model is one based
on a polynomial function, such as a linear or quadratic growth
model. Although there are many behaviors for which polyno-
mial functions are well suited in describing patterns of change
during periods of development, there are also many cases in

which polynomial functions are theoretically inappropriate.
This study considered longitudinal measures of antisocial
behaviors and reading performance from late childhood to
early adolescence. Whereas antisocial behaviors were best
described by a linear function for the study period, reading
performance was best described by an exponential function
that assumed an increase in performance as children grew
older with a change rate that gradually slowed over time. In
contrast to a quadratic growth model that might also reason-
ably capture the behavioral trajectories over the observed
period, an exponential function may be considered more
reasonable in terms of theoretical considerations because
reading ability is typically expected to slow as children develop
their skills and reach their potential levels. Further, the expo-
nential function considered for reading performance had the
same number of parameters as a quadratic growth model and
so was not more demanding in terms of its parameterization.

An increasingly popular application of the latent curve
model is a multivariate version in which two or more longitu-
dinal variables are simultaneously considered to study the joint
associations between variables measured over time. The model
does not require that the different variables be measured at the
same times, nor does it require that the variables be observed
the same number of times or have equal spacing between
measurement occasions. Each variable may change according
to a different function. The random coefficients that describe
change in each variable at the individual level may then be
studied to understand how characteristics of change in one
variable may be related to similar or different features describ-
ing change in another variable.

The example provided in this article showed how two longi-
tudinal variables, antisocial behaviors and reading perform-
ance, could be related in a multivariate latent curve model in
which a linear growth model characterized changes in anti-
social behaviors and a nonlinear function described changes in
reading performance. Although the estimated associations
were weak, the results did suggest a tendency for higher levels
of antisocial behaviors to be related to lower reading perform-
ance at age 6 and when individuals reach their potential
performance levels.This is consistent with the literature, which
suggests a link between antisocial behavior and difficulties in
academic performance. Results from this analysis do not,
however, suggest that one behavior is the cause of the other,
but rather that there may be meaningful ties between these or
related behaviors.

The primary goal of this article was to illustrate the utility
of nonlinear latent curve models for developmental investi-
gations. Although we see the use of latent curve models based
on polynomial functions to be a positive step in expanding the
strategies for the analysis of longitudinal developmental data,
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Table 3
Correlations among random coefficients at the individual level

η10i η11i η20i η21i η22i

Antisocial behavior level at 6 years, η10i 1.00
Antisocial behavior linear change rate, η11i .31 1.00
Reading performance potential level, η20i –.43 –.34 1.00
Reading performance at 6 years, η21i –.52 –.12 –.22 1.00
Reading performance nonlinear change rate, η22i .15 .21 –.65 .76 1

Note. Age was centered at 6 years.
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we also see a need for researchers to consider alternative func-
tions that may better characterize development. In many cases,
a nonlinear function may rely on the same number of
parameters as a polynomial function and so may not be more
complex in terms of parameterization. Furthermore, a nonlin-
ear function may also be easier to interpret than a higher order
polynomial or have characteristics that better relate to a given
behavior. In the example presented here, the exponential
function used to describe reading performance has a parame-
ter that was related to performance level at a given age, but also
included a parameter that was related to a potential perform-
ance level. Thus, the ability to estimate different types of
change within a single model allowed us to represent the
changes occurring in antisocial behavior and reading ability, an
important step forward in the analysis of longitudinal develop-
mental data.
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